
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530634/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging.<br>Nature Methods, 2011, 8, 1027-1036.                                                                        | 19.0 | 1,198     |
| 2  | Fourier phase microscopy for investigation of biological structures and dynamics. Optics Letters, 2004, 29, 2503.                                                                                                | 3.3  | 442       |
| 3  | Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13978-13983. | 7.1  | 439       |
| 4  | lsotropic three-dimensional super-resolution imaging with a self-bending point spread function.<br>Nature Photonics, 2014, 8, 302-306.                                                                           | 31.4 | 416       |
| 5  | Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods, 2016, 13, 485-488.                                                                                                   | 19.0 | 363       |
| 6  | De novo design of a fluorescence-activating $\hat{I}^2$ -barrel. Nature, 2018, 561, 485-491.                                                                                                                     | 27.8 | 269       |
| 7  | Spatiotemporal Coherent Control of Lattice Vibrational Waves. Science, 2003, 299, 374-377.                                                                                                                       | 12.6 | 236       |
| 8  | Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 2018, 118, 9412-9454.                                                                                                     | 47.7 | 223       |
| 9  | Ultrabright photoactivatable fluorophores created by reductive caging. Nature Methods, 2012, 9, 1181-1184.                                                                                                       | 19.0 | 201       |
| 10 | Terahertz Polaritonics. Annual Review of Materials Research, 2007, 37, 317-350.                                                                                                                                  | 9.3  | 147       |
| 11 | Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues.<br>Nature Communications, 2019, 10, 2781.                                                                        | 12.8 | 135       |
| 12 | Phosphine Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy. Journal of the<br>American Chemical Society, 2013, 135, 1197-1200.                                                          | 13.7 | 124       |
| 13 | Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization.<br>ACS Nano, 2017, 11, 12677-12686.                                                                             | 14.6 | 120       |
| 14 | Twinkle, twinkle little star: Photoswitchable fluorophores for superâ€resolution imaging. FEBS<br>Letters, 2014, 588, 3603-3612.                                                                                 | 2.8  | 117       |
| 15 | Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Optics<br>Letters, 2005, 30, 323.                                                                                    | 3.3  | 112       |
| 16 | A model for the generation and interconversion of ER morphologies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5243-51.                                         | 7.1  | 112       |
| 17 | Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5878-5883.          | 7.1  | 108       |
| 18 | Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy. Journal of Physical Chemistry A,<br>2007, 111, 4873-4883.                                                                                         | 2.5  | 85        |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analysis of replica pulses in femtosecond pulse shaping with pixelated devices. Optics Express, 2006, 14, 1314.                                                                          | 3.4  | 71        |
| 20 | Reducing Vibration by Digital Filtering and Input Shaping. IEEE Transactions on Control Systems Technology, 2011, 19, 1410-1420.                                                         | 5.2  | 71        |
| 21 | Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix.<br>Optics Letters, 2002, 27, 652.                                                         | 3.3  | 69        |
| 22 | Feature-rich covalent stains for super-resolution and cleared tissue fluorescence microscopy.<br>Science Advances, 2020, 6, eaba4542.                                                    | 10.3 | 60        |
| 23 | Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping.<br>Optics Letters, 2004, 29, 2052.                                                          | 3.3  | 51        |
| 24 | Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomedical<br>Optics Express, 2019, 10, 1257.                                                         | 2.9  | 51        |
| 25 | Single-Molecule Electrochemistry on a Porous Silica-Coated Electrode. Journal of the American Chemical Society, 2017, 139, 2964-2971.                                                    | 13.7 | 50        |
| 26 | Automated two-dimensional femtosecond pulse shaping. Journal of the Optical Society of America B:<br>Optical Physics, 2002, 19, 2489.                                                    | 2.1  | 48        |
| 27 | Microtubule Acetylation Is Required for Mechanosensation in Drosophila. Cell Reports, 2018, 25, 1051-1065.e6.                                                                            | 6.4  | 47        |
| 28 | Superresolution imaging of <i>Drosophila</i> tissues using expansion microscopy. Molecular Biology of the Cell, 2018, 29, 1413-1421.                                                     | 2.1  | 43        |
| 29 | Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward<br>theÂadult podocyte fate. Kidney International, 2019, 96, 597-611.                  | 5.2  | 42        |
| 30 | Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted<br>Gland Analysis. Cancer Research, 2022, 82, 334-345.                                   | 0.9  | 42        |
| 31 | Rapid Actin-Dependent Viral Motility in Live Cells. Biophysical Journal, 2009, 97, 1647-1656.                                                                                            | 0.5  | 41        |
| 32 | Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins.<br>Journal of Biomedical Optics, 2019, 24, 1.                                         | 2.6  | 40        |
| 33 | A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites.<br>ELife, 2019, 8, .                                                                     | 6.0  | 39        |
| 34 | The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindleÅorientation. Nature Cell Biology, 2017, 19, 384-390.                               | 10.3 | 35        |
| 35 | Point by Point: An Introductory Guide to Sample Preparation for Singleâ€Molecule, Superâ€Resolution<br>Fluorescence Microscopy. Current Protocols in Chemical Biology, 2015, 7, 103-120. | 1.7  | 33        |
| 36 | Volumetric, Nanoscale Optical Imaging of Mouse and Human Kidney via Expansion Microscopy.<br>Scientific Reports, 2018, 8, 10396.                                                         | 3.3  | 31        |

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nature Communications, 2021, 12, 856.                   | 12.8 | 31        |
| 38 | Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology:<br>JASN, 2021, 32, 2697-2713.                       | 6.1  | 28        |
| 39 | New fluorescent probes for super-resolution imaging. Nature Biotechnology, 2011, 29, 880-881.                                                       | 17.5 | 27        |
| 40 | A study of crane operator performance comparing PD-control and input shaping. , 2011, , .                                                           |      | 24        |
| 41 | Automated spatiotemporal diffraction of ultrashort laser pulses. Optics Letters, 2003, 28, 2408.                                                    | 3.3  | 23        |
| 42 | Typesetting of terahertz waveforms. Optics Letters, 2004, 29, 1802.                                                                                 | 3.3  | 22        |
| 43 | Advantages of using command shaping over feedback for crane control. , 2010, , .                                                                    |      | 19        |
| 44 | Extended-Depth 3D Super-Resolution Imaging Using Probe-Refresh STORM. Biophysical Journal, 2018, 114, 1980-1987.                                    | 0.5  | 19        |
| 45 | Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Reports, 2021, 34, 108888.                               | 6.4  | 19        |
| 46 | Multiplexed single-cell profiling of chromatin states at genomic loci by expansion microscopy.<br>Nucleic Acids Research, 2021, 49, e82-e82.        | 14.5 | 18        |
| 47 | Multi-input shaping control for multi-hoist cranes. , 2013, , .                                                                                     |      | 16        |
| 48 | Using mechatronics to teach mechanical design and technical communication. Mechatronics, 2008, 18, 179-186.                                         | 3.3  | 14        |
| 49 | Input shapers for reducing overshoot in human-operated flexible systems. , 2009, , .                                                                |      | 13        |
| 50 | Performance comparison of robust negative input shapers. , 2008, , .                                                                                |      | 11        |
| 51 | Versatile, do-it-yourself, low-cost spinning disk confocal microscope. Biomedical Optics Express, 2022, 13, 1102.                                   | 2.9  | 11        |
| 52 | Fluorescent labeling of abundant reactive entities (FLARE) for cleared-tissue and super-resolution microscopy. Nature Protocols, 2022, 17, 819-846. | 12.0 | 9         |
| 53 | Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts.<br>Materials Today, 2022, 52, 63-79.                | 14.2 | 9         |
| 54 | Multiresolution nondestructive 3D pathology of whole lymph nodes for breast cancer staging.<br>Journal of Biomedical Optics, 2022, 27, .            | 2.6  | 9         |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Isotropic 3D Super Resolution Imaging with Self-Bending Point Spread Function. Biophysical Journal, 2013, 104, 668a.                                       | 0.5 | 7         |
| 56 | Command shaping of a boom crane subject to nonzero initial conditions. , 2017, , .                                                                         |     | 7         |
| 57 | Performance Comparison of Robust Input Shapers. , 2007, , .                                                                                                |     | 6         |
| 58 | Reducing vibration and providing robustness with multi-input shapers. , 2009, , .                                                                          |     | 6         |
| 59 | Use of Cranes in System Dynamics and Controls Education. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 9099-9104. | 0.4 | 5         |
| 60 | The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS<br>Pathogens, 2022, 18, e1010496.                        | 4.7 | 5         |
| 61 | Use of design competitions in mechatronics education. , 2009, , .                                                                                          |     | 4         |
| 62 | Oscillation suppressing for an energy efficient bridge crane using input shaping. , 2013, , .                                                              |     | 4         |
| 63 | Initial Experiments on the Control of a Mobile Tower Crane. , 2007, , 1861.                                                                                |     | 3         |
| 64 | Suppression of cable suspended parallel manipulator vibration utilizing input shaping. , 2017, , .                                                         |     | 3         |
| 65 | Terahertz amplification in high-dielectric materials. Springer Series in Chemical Physics, 2007, ,<br>802-804.                                             | 0.2 | 3         |
| 66 | Optimal input shaping filters for non-zero initial states. , 2009, , .                                                                                     |     | 2         |
| 67 | Spatiotemporal femtosecond pulse shaping using a MEMS-based micromirror SLM. Springer Series in Chemical Physics, 2007, , 184-186.                         | 0.2 | 2         |
| 68 | Degenerate four-wave mixing spectroscopy based on two dimensional pulse shaping. Springer Series in<br>Chemical Physics, 2005, , 569-571.                  | 0.2 | 1         |
| 69 | Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology:<br>JASN, 2021, , ASN.2021-05-0614.                         | 6.1 | 1         |
| 70 | Typesetting THz Waveforms. Springer Series in Chemical Physics, 2005, , 717-719.                                                                           | 0.2 | 0         |
| 71 | Spatiotemporal femtosecond pulse shaping using a MEMS-based micromirror SLM. , 2006, , MH2.                                                                |     | Ο         |
| 72 | Terahertz polaritonics: High-field THz coherent control and spectroscopy. , 2006, , .                                                                      |     | 0         |

5

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reductive Caging enables Ultra-Bright Photoactivatable Fluorophores for Superresolution Imaging.<br>Biophysical Journal, 2013, 104, 534a.           | 0.5 | 0         |
| 74 | Modeling and control of rocking in cable-riding systems. , 2013, , .                                                                                |     | 0         |
| 75 | Super-resolution Microscopy Made Simple. , 2017, , .                                                                                                |     | 0         |
| 76 | Reduction of Residual Vibration in Displacement-Amplified Micro-Electromagnetic Actuators with Non-linear Dynamics Using Input Shaping. , 2018, , . |     | 0         |
| 77 | Simple Chemical Stains for Feature-Rich Super-Resolution and Cleared-Tissue Microscopy. Microscopy and Microanalysis, 2019, 25, 1202-1203.          | 0.4 | 0         |
| 78 | PHONON-POLARITONS: CONTROLLED PROPAGATION AND AMPLIFICATION. , 2002, , .                                                                            |     | 0         |
| 79 | Two-dimensional Arbitrary THz Waveform Generation and Integrated Waveguide Propagation. , 2003, , .                                                 |     | 0         |
| 80 | Coherent Control Over Collective Polariton Excitations: The Dawn of Polaritonics. Springer Series in Chemical Physics, 2003, , 541-545.             | 0.2 | 0         |
| 81 | Coherently Controlled Multidimensional Optical Spectroscopy. , 2006, , .                                                                            |     | 0         |
| 82 | Coherently Controlled Multidimensional Optical Spectroscopy. Springer Series in Chemical Physics, 2007, , 371-373.                                  | 0.2 | 0         |
| 83 | THz Polaritonics: Shaped Waveforms, Large Amplitudes and Linear and Nonlinear Spectroscopy. , 2007, ,                                               |     | 0         |