Xavier Querol

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5530220/xavier-querol-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 104 41,737 734 h-index g-index citations papers 46,960 6.7 784 7.38 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
734	Primary and secondary organic winter aerosols in Mediterranean cities under different mixing layer conditions (Barcelona and Granada) <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	O
733	Compliance with 2021 WHO air quality guidelines across Europe will require radical measures. <i>Environmental Research Letters</i> , 2022 , 17, 021002	6.2	0
732	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks <i>Environmental Science & Environmental Scie</i>	10.3	16
731	Significant enrichment of Rb and Cs in the Late Triassic coals from the Coc Sau surface mine, Cam Pha Coalfield, Quang Ninh Province, Vietnam. <i>Ore Geology Reviews</i> , 2022 , 142, 104700	3.2	1
730	Children's exposure to size-fractioned particulate matter: Chemical composition and internal dose <i>Science of the Total Environment</i> , 2022 , 823, 153745	10.2	1
729	Chemistry and particle size distribution of respirable coal dust in underground mines in Central Eastern Europe. <i>International Journal of Coal Science and Technology</i> , 2022 , 9, 1	4.5	2
728	Increasing atmospheric dust transport towards the western Mediterranean over 1948\(\mathbb{Q}\)020. <i>Npj Climate and Atmospheric Science</i> , 2022 , 5,	8	1
727	Chemical Speciation and Leaching Behavior of Hazardous Trace Elements in Coal Combustion Products from Coal-Fired Power Stations in China <i>ACS Omega</i> , 2022 , 7, 14697-14711	3.9	
726	Characterization of deposited dust and its respirable fractions in underground coal mines: Implications for oxidative potential-driving species and source apportionment. <i>International Journal of Coal Geology</i> , 2022 , 258, 104017	5.5	1
725	How can ventilation be improved on public transportation buses? Insights from CO measurements. <i>Environmental Research</i> , 2021 , 112451	7.9	5
724	Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. <i>Atmospheric Environment: X</i> , 2021 , 12, 100145	2.8	2
723	Mineralogical and geochemical variations from coal to deposited dust and toxicity of size-segregated respirable dust in a blasting mining underground coal mine in Hunan Province, South China. <i>International Journal of Coal Geology</i> , 2021 , 248, 103863	5.5	3
722	A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmanck Basin, NW Turkey), with emphasis on syngenetic zeolite formation. <i>International Journal of Coal Geology</i> , 2021 , 237, 103691	5.5	13
721	Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian Coalfield, Guangxi Province. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 301	2.4	1
720	The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. <i>Cryosphere</i> , 2021 , 15, 1157-1172	5.5	4
719	Bioaerosols in public and tourist buses. <i>Aerobiologia</i> , 2021 , 37, 525-541	2.4	0
718	Relationship between ambient black carbon and daily mortality in Tehran, Iran: a distributed lag nonlinear time series analysis. <i>Journal of Environmental Health Science & Engineering</i> , 2021 , 19, 907-916	2.9	1

(2021-2021)

717	The influence of COVID-19 preventive measures on the air quality in Abu Dhabi (United Arab Emirates). <i>Air Quality, Atmosphere and Health</i> , 2021 , 14, 1-9	5.6	6
716	Organophosphate esters in airborne particles from subway stations. <i>Science of the Total Environment</i> , 2021 , 769, 145105	10.2	5
715	Increase in secondary organic aerosol in an urban environment. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8323-8339	6.8	5
714	A paradigm shift to combat indoor respiratory infection. <i>Science</i> , 2021 , 372, 689-691	33.3	73
713	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. <i>Science of the Total Environment</i> , 2021 , 768, 14528.	2 ^{10.2}	8
712	2005\(\textit{1005}\) 1005\(\textit{1005}\)	5.3	5
711	Lessons from the COVID-19 air pollution decrease in Spain: Now what?. <i>Science of the Total Environment</i> , 2021 , 779, 146380	10.2	29
710	Geochemical Characteristics of Early Permian Pyroclastic Rocks in the Jimunai Basin, West Junggar, Xinjiang (NW China): Implications for Provenance and Tectonic Setting. <i>Acta Geologica Sinica</i> , 2021 , 95, 794-809	0.7	1
709	Trends in primary and secondary particle number concentrations in urban and regional environments in NE Spain. <i>Atmospheric Environment</i> , 2021 , 244, 117982	5.3	2
708	Evaluation of chemical stabilisation methods of coal-petcoke fly ash to reduce the mobility of Mo and Ni against environmental concerns. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111488	7	1
707	Source contribution and origin of PM10 and arsenic in a complex industrial region (Huelva, SW Spain). <i>Environmental Pollution</i> , 2021 , 274, 116268	9.3	4
706	Behaviour and speciation of inorganic trace pollutants in a coal-fired power plant equipped with DENOX-SCR-ESP-NH3FGD controls. <i>Fuel</i> , 2021 , 289, 119927	7.1	3
7 ⁰ 5	Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5'at different sites within a large metropolitan area. <i>Environmental Research</i> , 2021 , 192, 110257	7.9	9
704	Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 431-455	6.8	6
703	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. <i>Aerosol and Air Quality Research</i> , 2021 , 21, 200567	4.6	8
702	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. <i>Environment International</i> , 2021 , 147, 106326	12.9	52
701	Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. <i>International Journal of Coal Geology</i> , 2021 , 235, 103677	5.5	17
700	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006787	5.9	1

699	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3345-3370	6.8	8
698	Understanding the local and remote source contributions to ambient O during a pollution episode using a combination of experimental approaches in the Guadalquivir valley, southern Spain. <i>Science of the Total Environment</i> , 2021 , 777, 144579	10.2	O
697	Short-term health effects from outdoor exposure to biomass burning emissions: A review. <i>Science of the Total Environment</i> , 2021 , 781, 146739	10.2	15
696	A phenomenology of new particle formation (NPF) at 13 European sites. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11905-11925	6.8	4
695	Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6335-6355	4	3
694	Associations between sources of particle number and mortality in four European cities. <i>Environment International</i> , 2021 , 155, 106662	12.9	2
693	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. <i>Environment International</i> , 2021 , 156, 106732	12.9	1
692	Compositional changes of PM in NE Spain during 2009-2018: A trend analysis of the chemical composition and source apportionment. <i>Science of the Total Environment</i> , 2021 , 795, 148728	10.2	4
691	Short-term effect of air pollution on attention function in adolescents (ATENC!) A randomized controlled trial in high schools in Barcelona, Spain. <i>Environment International</i> , 2021 , 156, 106614	12.9	1
690	Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. <i>Science of the Total Environment</i> , 2021 , 800, 149486	10.2	3
689	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. <i>Environment International</i> , 2021 , 157, 106818	12.9	30
688	Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting. <i>Environmental Research</i> , 2020 , 191, 109978	7.9	4
687	How can airborne transmission of COVID-19 indoors be minimised?. <i>Environment International</i> , 2020 , 142, 105832	12.9	525
686	Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. <i>Science of the Total Environment</i> , 2020 , 737, 139596	10.2	19
685	Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122935	12.8	21
684	Organic Air Quality Markers of Indoor and Outdoor PM Aerosols in Primary Schools from Barcelona. International Journal of Environmental Research and Public Health, 2020 , 17,	4.6	3
683	How do ultrafine particles in urban air affect ambulatory blood pressure?. <i>Journal of Hypertension</i> , 2020 , 38, 845-849	1.9	1
682	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 409-429	6.8	10

(2020-2020)

681	Mineralogy and Geochemistry of Late Permian Coals within the Tongzi Coalfield in Guizhou Province, Southwest China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 44	2.4	4
680	Geological Controls on Mineralogy and Geochemistry of the Permian and Jurassic Coals in the Shanbei Coalfield, Shaanxi Province, North China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 138	2.4	2
679	Burden of mortality attributed to PM2.5 exposure in cities of Iran; contribution of short-term pollution peaks. <i>Atmospheric Environment</i> , 2020 , 224, 117365	5.3	20
678	Variability of air pollutants, and PM composition and sources at a regional background site in the Balearic Islands: Review of western Mediterranean phenomenology from a 3-year study. <i>Science of the Total Environment</i> , 2020 , 717, 137177	10.2	6
677	Characterization of organic aerosol at a rural site influenced by olive waste biomass burning. <i>Chemosphere</i> , 2020 , 248, 125896	8.4	9
676	Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. <i>Atmosphere</i> , 2020 , 11, 149	2.7	5
675	Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. <i>Science of the Total Environment</i> , 2020 , 726, 138540	10.2	425
674	Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. <i>Science of the Total Environment</i> , 2020 , 731, 139002	10.2	22
673	Molecular insights into new particle formation in Barcelona, Spain. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10029-10045	6.8	14
672	Potential Impact of a Low Emission Zone on Street-Level Air Quality in Barcelona City Using CALIOPE-Urban Model. <i>Springer Proceedings in Complexity</i> , 2020 , 171-176	0.3	
671	Unravelling the Origin of High Ozone Concentrations in Southwestern Europe. <i>Springer Proceedings in Complexity</i> , 2020 , 17-21	0.3	1
670	Emissions and source allocation of carbonaceous air pollutants from wood stoves in developed countries: A review. <i>Atmospheric Pollution Research</i> , 2020 , 11, 234-251	4.5	13
669	Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. <i>Atmospheric Environment</i> , 2020 , 224, 117252	5.3	32
668	Chemistry and sources of PM2.5 and volatile organic compounds breathed inside urban commuting and tourist buses. <i>Atmospheric Environment</i> , 2020 , 223, 117234	5.3	5
667	Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. <i>International Journal of Coal Geology</i> , 2020 , 218, 103366	5.5	18
666	Source apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a traffic-influenced urban atmosphere, in Portugal. <i>Atmospheric Environment</i> , 2020 , 223, 117217	5.3	9
665	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. <i>Environment International</i> , 2020 , 135, 105345	12.9	54
664	Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. <i>Environment International</i> , 2020 , 134, 105299	12.9	34

663	Effect of ventilation strategies and air purifiers on the children's exposure to airborne particles and gaseous pollutants in school gyms. <i>Science of the Total Environment</i> , 2020 , 712, 135673	10.2	30
662	Impact of wood combustion on indoor air quality. Science of the Total Environment, 2020, 705, 135769	10.2	16
661	Rapid changes of dust geochemistry in the Saharan Air Layer linked to sources and meteorology. <i>Atmospheric Environment</i> , 2020 , 223, 117186	5.3	9
660	New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 17	2.4	
659	Enrichment of Nb-Ta-Zr-W-Li in the Late Carboniferous Coals from the Weibei Coalfield, Shaanxi, North China. <i>Energies</i> , 2020 , 13, 4818	3.1	2
658	Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. <i>International Journal of Coal Geology</i> , 2020 , 231, 103604	5.5	11
657	The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balkesir (Western Turkey). <i>International Journal of Coal Geology</i> , 2020 , 228, 103548	5.5	16
656	Association of short-term exposure to air pollution with mortality in a middle eastern tourist city. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 1223-1234	5.6	4
655	Utilization of Boiler Slag from Pulverized-Coal-Combustion Power Plants in China for Manufacturing Acoustic Materials. <i>Energies</i> , 2020 , 13, 5705	3.1	O
654	Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 41702	-4 ⁵ 1716	2
653	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. <i>Science of the Total Environment</i> , 2020 , 747, 141266	10.2	10
652	Chemistry of dry and wet atmospheric deposition over the Balearic Islands, NW Mediterranean: Source apportionment and African dust areas. <i>Science of the Total Environment</i> , 2020 , 747, 141187	10.2	12
651	Enrichment of Li₲a᠒r⊞f and SeMoሺr収為s₽b Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. <i>Energies</i> , 2020 , 13, 6660	3.1	3
650	Public Transport Strikes and Their Relationships With Air Pollution, Mortality, and Hospital Admissions. <i>American Journal of Epidemiology</i> , 2020 , 189, 116-119	3.8	
649	The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications. <i>Science of the Total Environment</i> , 2020 , 700, 134444	10.2	7
648	Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. <i>Science of the Total Environment</i> , 2020 , 701, 134474	10.2	58
647	Understanding the impact of FGD technologies on the emissions of key pollutants in a Co-Firing power plant. <i>Journal of the Energy Institute</i> , 2020 , 93, 518-532	5.7	5
646	Source apportionment of urban PM in Barcelona during SAPUSS using organic and inorganic components. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 32114-32127	5.1	6

(2019-2019)

Mineralogical and Environmental Geochemistry of Coal Combustion Products from Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, Northwest China. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 496	2.4	2
Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. <i>International Journal of Coal Geology</i> , 2019 , 203, 52-59	5.5	42
African dust and air quality over Spain: Is it only dust that matters?. <i>Science of the Total Environment</i> , 2019 , 686, 737-752	10.2	34
Monitoring the impact of desert dust outbreaks for air quality for health studies. <i>Environment International</i> , 2019 , 130, 104867	12.9	84
Vertical and horizontal fall-off of black carbon and NO within urban blocks. <i>Science of the Total Environment</i> , 2019 , 686, 236-245	10.2	10
Ultrafine particles and PM in the air of cities around the world: Are they representative of each other?. <i>Environment International</i> , 2019 , 129, 118-135	12.9	57
Ozone source apportionment during peak summer events over southwestern Europe. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5467-5494	6.8	20
Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 22688-22703	5.1	5
Synergistic effect of the occurrence of African dust outbreaks on atmospheric pollutant levels in the Madrid metropolitan area. <i>Atmospheric Research</i> , 2019 , 226, 208-218	5.4	17
Origin and speciation of major and trace PM elements in the Barcelona subway system. <i>Transportation Research, Part D: Transport and Environment</i> , 2019 , 72, 17-35	6.4	11
Vehicle interior air quality conditions when travelling by taxi. Environmental Research, 2019, 172, 529-54	17 .9	29
The mode of occurrence and origin of minerals in the Early Permian high-rank coals of the Jimunai depression, Xinjiang Uygur Autonomous Region, NW China. <i>International Journal of Coal Geology</i> , 2019 , 205, 58-74	5.5	14
Nanoparticles from construction wastes: A problem to health and the environment. <i>Journal of Cleaner Production</i> , 2019 , 219, 236-243	10.3	64
Cluster analysis of urban ultrafine particles size distributions. <i>Atmospheric Pollution Research</i> , 2019 , 10, 45-52	4.5	19
Production of environmentally friendly sand-like products from granitoid waste sludge and coal fly ash for civil engineering. <i>Journal of Cleaner Production</i> , 2019 , 238, 117880	10.3	5
Predictors of personal exposure to black carbon among women in southern semi-rural Mozambique. <i>Environment International</i> , 2019 , 131, 104962	12.9	11
2005\(\mathbb{Q}\)017 ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 7445-7465	6.8	12
CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain). <i>Geoscientific Model Development</i> , 2019 , 12, 2811-2835	6.3	16
	Yihua Power Plants in Xinjiang Autonomous Region, Northwest China. <i>Minerals (Basel, Switzerland)</i> , 2019, 9, 496 Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. <i>International Journal of Coal Geology</i> , 2019, 203, 52-59 African dust and air quality over Spain: Is it only dust that matters?. <i>Science of the Total Environment</i> , 2019, 686, 737-752 Monitoring the impact of desert dust outbreaks for air quality for health studies. <i>Environment International</i> , 2019, 130, 104867 Vertical and horizontal fall-off of black carbon and NO within urban blocks. <i>Science of the Total Environment</i> , 2019, 686, 236-245 Ultrafine particles and PM in the air of cities around the world: Are they representative of each other?. <i>Environment International</i> , 2019, 129, 118-135 Ozone source apportionment during peak number events over southwestern Europe. <i>Atmospheric Chemistry and Physics</i> , 2019, 19, 5467-5494 Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. <i>Environmental Science and Pollution Research</i> , 2019, 26, 22688-22703 Synergistic effect of the occurrence of African dust outbreaks on atmospheric pollutant levels in the Madrid metropolitan area. <i>Atmospheric Research</i> , 2019, 226, 208-218 Origin and speciation of major and trace PM elements in the Barcelona subway system. <i>Transportation Research</i> , Part D: Transport and Environment, 2019, 72, 17-35 Vehicle interior air quality conditions when travelling by taxi. <i>Environmental Research</i> , 2019, 172, 529-54 Nanoparticles from construction wastes: A problem to health and the environment. <i>Journal of Cleaner Production</i> , 2019, 238, 117880 Production of environmentally friendly sand-like products from granitoid waste sludge and coal fly ash for civil engineering. <i>Journal of Cleaner Production</i> , 2019, 238, 117880 Predictors of personal exposure to black carbon among women in southern semi-rural Mozambique. <i>Environment International</i> , 2019, 131, 104962	Yihua Power Plants in Xinjiang Autonomous Region, Northwest China. Minerals (Basel, Switzerland), 2019, 9, 96 2.4 Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology, 2019, 203, 52-59 5.5 African dust and air quality over Spain: Is it only dust that matters?. Science of the Total Environment 1,2019, 686, 737-752 10.2 Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International, 2019, 130, 104867 12.9 Vertical and horizontal fall-off of black carbon and NO within urban blocks. Science of the Total Environment, 2019, 686, 236-245 10.2 Ultrafine particles and PM in the air of cities around the world: Are they representative of each other?. Environment International, 2019, 129, 118-135 12-9 Ozone source apportionment during peak summer events over southwestern Europe. Atmospheric Chemistry and Physics, 2019, 19, 5467-5494 6.8 Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. Environmental Science and Pollution Research, 2019, 26, 22688-22703 5.1 Synergistic effect of the occurrence of African dust outbreaks on atmospheric pollutant levels in the Madrid metropolitian area. Atmospheric Research, 2019, 226, 208-218 5.4 Origin and speciation of major and trace PM elements in the Barcelona subway system. Transportation Research, Part D: Transport and Environment, 2019, 721, 7235 6.4 Vehicle interior air qualit

627	Relating high ozone, ultrafine particles, and new particle formation episodes using cluster analysis. <i>Atmospheric Environment: X</i> , 2019 , 4, 100051	2.8	6
626	Indoor Sources of Air Pollutants. <i>Issues in Environmental Science and Technology</i> , 2019 , 1-34	0.7	4
625	Health effects of desert dust and sand storms: a systematic review and meta-analysis protocol. <i>BMJ Open</i> , 2019 , 9, e029876	3	7
624	Analysis of summer O₃ in the Madrid air basin with the LOTOS-EUROS chemical transport model. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14211-14232	6.8	12
623	Geological controls on enrichment of Mn, Nb (Ta), Zr (Hf), and REY within the Early Permian coals of the Jimunai Depression, Xinjiang Province, NW China. <i>International Journal of Coal Geology</i> , 2019 , 215, 103298	5.5	11
622	Effectiveness of commercial face masks to reduce personal PM exposure. <i>Science of the Total Environment</i> , 2019 , 650, 1582-1590	10.2	40
621	Particle-phase concentrations and sources of legacy and novel flame retardants in outdoor and indoor environments across Spain. <i>Science of the Total Environment</i> , 2019 , 649, 1541-1552	10.2	18
620	Testing the performance of sensors for ozone pollution monitoring in a citizen science approach. <i>Science of the Total Environment</i> , 2019 , 651, 1166-1179	10.2	40
619	Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents. <i>Science of the Total Environment</i> , 2018 , 630, 781-789	10.2	25
618	Chemical profiling of PM from urban road dust. Science of the Total Environment, 2018, 634, 41-51	10.2	61
617	Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction. <i>Science of the Total Environment</i> , 2018 , 628-629, 169-176	10.2	12
616	Fixation of treated phosphate waste and its use in concrete. <i>Journal of Cleaner Production</i> , 2018 , 178, 89-97	10.3	5
615	Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. <i>Environment International</i> , 2018 , 111, 144-151	12.9	37
614	Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. <i>Environmental Research</i> , 2018 , 162, 160-165	7.9	34
613	Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. <i>Construction and Building Materials</i> , 2018 , 175, 64-76	6.7	25
612	Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1149-1169	6.8	15
611	Air quality trends in an industrialised area of SW Spain. <i>Journal of Cleaner Production</i> , 2018 , 186, 465-47	410.3	16
610	2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain. <i>Environmental Pollution</i> , 2018 , 236, 570-579	9.3	25

(2018-2018)

609	Potential of hazardous waste encapsulation in concrete with coal fly ash and bivalve shells. <i>Journal of Cleaner Production</i> , 2018 , 185, 870-881	10.3	12	
608	A review on the applications of coal combustion products in China. <i>International Geology Review</i> , 2018 , 60, 671-716	2.3	37	
607	Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. <i>Science of the Total Environment</i> , 2018 , 616-617, 720-729	10.2	37	
606	Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. <i>Chemosphere</i> , 2018 , 190, 454-462	8.4	19	
605	Effect of public transport strikes on air pollution levels in Barcelona (Spain). <i>Science of the Total Environment</i> , 2018 , 610-611, 1076-1082	10.2	36	
604	Aerosol sources in subway environments. Environmental Research, 2018, 167, 314-328	7.9	28	
603	Air Quality in Subway Systems 2018 , 289-321		3	
602	Non-technological Measures on Road Traffic to Abate Urban Air Pollution 2018 , 229-260		3	
601	Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. <i>Science of the Total Environment</i> , 2018 , 642, 148-154	10.2	9	
600	Environmental impact and potential use of coal fly ash and sub-economical quarry fine aggregates in concrete. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1043-1056	12.8	28	
599	An empirical model to predict road dust emissions based on pavement and traffic characteristics. <i>Environmental Pollution</i> , 2018 , 237, 713-720	9.3	34	
598	Vertical and horizontal distribution of regional new particle formation events in Madrid 2018,		1	
597	Vertical and horizontal distribution of regional new particle formation events in Madrid. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 16601-16618	6.8	21	
596	Traffic-Related Air Pollution, A Status, and Neurodevelopmental Outcomes among School Children Enrolled in the BREATHE Project (Catalonia, Spain). <i>Environmental Health Perspectives</i> , 2018 , 126, 087001	8.4	33	
595	How to protect school children from the neurodevelopmental harms of air pollution by interventions in the school environment in the urban context. <i>Environment International</i> , 2018 , 121, 199	9- 20 8	22	
594	Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. <i>Atmospheric Environment</i> , 2018 , 185, 207-220	5.3	12	
593	Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6511-6533	6.8	24	
592	Current State of Particulate Air Quality 2018 , 1-19		1	

591	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. <i>Science of the Total Environment</i> , 2017 , 584-585, 849-855	10.2	33
590	Coal characteristics, elemental composition and modes of occurrence of some elements in the saalan coal (Balkesir, NW Turkey). <i>International Journal of Coal Geology</i> , 2017 , 172, 43-59	5.5	38
589	Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield, Guizhou Province, Southwest China. <i>International Journal of Coal Geology</i> , 2017 , 171, 111-129	5.5	28
588	The effect of ventilation protocols on airborne particulate matter in subway systems. <i>Science of the Total Environment</i> , 2017 , 584-585, 1317-1323	10.2	33
587	Factors controlling particle number concentration and size at metro stations. <i>Atmospheric Environment</i> , 2017 , 156, 169-181	5.3	21
586	Response to: Premature deaths attributed to ambient air pollutants: let us interpret the Robins-Greenland theorem correctly. <i>International Journal of Public Health</i> , 2017 , 62, 339-341	4	3
585	Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. <i>Scientific Reports</i> , 2017 , 7, 45956	4.9	30
5 ⁸ 4	Recovery of nutrients (N-P-K) from potassium-rich sludge anaerobic digestion side-streams by integration of a hybrid sorption-membrane ultrafiltration process: Use of powder reactive sorbents as nutrient carriers. <i>Science of the Total Environment</i> , 2017 , 599-600, 422-430	10.2	11
583	Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia). <i>Environmental Research</i> , 2017 , 158, 153-166	7.9	18
582	Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. <i>Environment International</i> , 2017 , 105, 12-19	12.9	70
581	Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry. <i>Science of the Total Environment</i> , 2017 , 599-600, 2065-2073	10.2	24
580	Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4052-4069	4.4	27
579	Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. <i>Science of the Total Environment</i> , 2017 , 593-594, 543-551	10.2	16
578	Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM from Southern European cities. <i>Science of the Total Environment</i> , 2017 , 595, 494-504	10.2	122
577	The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. <i>International Journal of Coal Geology</i> , 2017 , 173, 110-128	5.5	44
576	Do air quality targets really represent safe limits for lung cancer risk?. <i>Science of the Total Environment</i> , 2017 , 580, 74-82	10.2	16
575	Interaction between airborne copper exposure and ATP7B polymorphisms on inattentiveness in scholar children. <i>International Journal of Hygiene and Environmental Health</i> , 2017 , 220, 51-56	6.9	10
574	Formation and alteration of airborne particles in the subway environment. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 59-64	4.3	11

573	Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10018-10029	5.1	12
572	Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	20
571	Comparative study of bulk and partial digestion methods for airborne PM10-bound elements in a high mineral dust urban site in Constantine, Algeria. <i>International Journal of Environmental Analytical Chemistry</i> , 2017 , 97, 1132-1150	1.8	2
570	Analysis of PM2.5 in Cfidoba, Argentina under the effects of the El Ni ll Southern Oscillation. <i>Atmospheric Environment</i> , 2017 , 171, 49-58	5.3	16
569	Traffic-related air pollution and spectacles use in schoolchildren. <i>PLoS ONE</i> , 2017 , 12, e0167046	3.7	18
568	Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yenik coal of Late Oligocene age in the Thrace Basin (NW Turkey). <i>International Journal of Coal Geology</i> , 2017 , 181, 103-123	5.5	20
567	Meso- and microporosity of the subbituminous kM2 coal seam (Soma, Turkey) and its relationship with coal characteristics. <i>International Journal of Coal Geology</i> , 2017 , 184, 73-87	5.5	10
566	Traffic-related Air Pollution and Attention in Primary School Children: Short-term Association. <i>Epidemiology</i> , 2017 , 28, 181-189	3.1	50
565	Copper Flash Smelting Flue Dust as a Source of Germanium. <i>Waste and Biomass Valorization</i> , 2017 , 8, 2121-2129	3.2	9
564	Anthropogenic versus mineral aerosols in the stimulation of microbial planktonic communities in coastal waters of the northwestern Mediterranean Sea. <i>Science of the Total Environment</i> , 2017 , 574, 553	3-568	14
563	Oxidative potential of subway PM2.5. Atmospheric Environment, 2017, 148, 230-238	5.3	44
562	Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 2017 , 142, 2700-2706	10.3	78
561	Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 160-169	6.8	46
560	Phenomenology of high-ozone episodes in NE Spain. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2817	-2838	33
559	AIRUSE-LIFE +: estimation of natural source contributions to urban ambient air PM₁₀ and PM_{2. 5} concentrations in southern Europe Implications to compliance with limit values. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3673-3685	6.8	49
558	Characterisation of Airborne Particulate Matter in Different European Subway Systems 2017 ,		1
557	Quantifying Dry and Wet Deposition Fluxes in Two Regions of Contrasting African Influence: The NE Iberian Peninsula and the Canary Islands. <i>Atmosphere</i> , 2017 , 8, 86	2.7	15
556	First Results of the Carbonaceous Aerosol in Rome and Environs (CARE) Experiment: Beyond Current Standards for PM10. <i>Atmosphere</i> , 2017 , 8, 249	2.7	42

555	Characterization of Road Dust Emissions in Milan: Impact of Vehicle Fleet Speed. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2438-2449	4.6	17
554	Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. <i>Environmental Pollution</i> , 2016 , 208, 125-136	9.3	74
553	Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in Barcelona. <i>Indoor Air</i> , 2016 , 26, 391-402	5.4	56
552	On the origin of the highest ozone episodes in Spain. Science of the Total Environment, 2016 , 572, 379-	38 2 0.2	32
551	Chemical characterization of humic-like substances (HULIS) in PM in Lanzhou, China. <i>Science of the Total Environment</i> , 2016 , 573, 1481-1490	10.2	51
550	New Insights from Zinc and Copper Isotopic Compositions into the Sources of Atmospheric Particulate Matter from Two Major European Cities. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	56
549	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514	3.6	1
548	Vertical and horizontal variability of PM₁₀ source contributions in Barcelona during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6785-6804	6.8	9
547	Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004\(\bar{2}\)014: a multi-exponential approach. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11787-11805	6.8	31
546	Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8609-8642	6.8	64
545	Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12567-12586	6.8	40
544	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3289-3309	6.8	191
543	Geochemistry of PM₁₀ over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6107-6129	6.8	42
542	An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 15133-48	5.1	48
541	Children's well-being at schools: Impact of climatic conditions and air pollution. <i>Environment International</i> , 2016 , 94, 196-210	12.9	95
540	A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. <i>Science of the Total Environment</i> , 2016 , 562, 822-833	10.2	29
539	Factors controlling air quality in different European subway systems. <i>Environmental Research</i> , 2016 , 146, 35-46	7.9	99
538	Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. <i>International Journal of Coal Geology</i> , 2016, 154-155, 1-15	5.5	13

537	Improving the modeling of road dust levels for Barcelona at urban scale and street level. <i>Atmospheric Environment</i> , 2016 , 125, 231-242	5.3	10
536	Traffic pollution exposure is associated with altered brain connectivity in school children. Neurolmage, 2016 , 129, 175-184	7.9	91
535	Effects of water and CMA in mitigating industrial road dust resuspension. <i>Atmospheric Environment</i> , 2016 , 131, 334-340	5.3	18
534	Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions. <i>Environmental Research</i> , 2016 , 145, 154-161	7.9	16
533	Traffic induced particle resuspension in Paris: Emission factors and source contributions. <i>Atmospheric Environment</i> , 2016 , 129, 114-124	5.3	69
532	Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. <i>Environment International</i> , 2016 , 88, 142-149	12.9	29
531	Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. <i>Science of the Total Environment</i> , 2016 , 565, 922-932	10.2	28
530	Assessment of the variability of atmospheric pollution in National Parks of mainland Spain. <i>Atmospheric Environment</i> , 2016 , 132, 332-344	5.3	11
529	Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas. <i>Science of the Total Environment</i> , 2016 , 544, 391-9	10.2	18
528	Nanoparticulate mineral matter from basalt dust wastes. <i>Chemosphere</i> , 2016 , 144, 2013-7	8.4	49
527	Case Studies of Source Apportionment and Suggested Measures at Southern European Cities. <i>Issues in Environmental Science and Technology</i> , 2016 , 168-263	0.7	4
526	Black Carbon Exposure of Schoolchildren in Barcelona. Springer Proceedings in Complexity, 2016, 173-1	750.3	
525	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities 2016 , 177-218		
524	Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 529-35	8.4	90
523	Neurodevelopmental Deceleration by Urban Fine Particles from Different Emission Sources: A Longitudinal Observational Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 1630-1636	8.4	58
522	Desert Dust Outbreaks in Southern Europe: Contribution to Daily PMIConcentrations and Short-Term Associations with Mortality and Hospital Admissions. <i>Environmental Health Perspectives</i> , 2016 , 124, 413-9	8.4	103
521	Powdered Ca-activated zeolite for phosphate removal from treated waste-water. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1962-1971	3.5	39
520	Timescales of mixing and of chemistry: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 253-76	3.6	

519	Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors. <i>Faraday Discussions</i> , 2016 , 189, 337-59	3.6	33
518	Integration of Powdered Ca-Activated Zeolites in a Hybrid SorptionMembrane Ultrafiltration Process for Phosphate Recovery. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 6204-6212	3.9	12
517	Intercomparison of a portable and two stationary mobility particle sizers for nanoscale aerosol measurements. <i>Aerosol Science and Technology</i> , 2016 , 50, 653-668	3.4	21
516	Response to "Quantifying the health impacts of ambient air pollutants: methodological errors must be avoided". <i>International Journal of Public Health</i> , 2016 , 61, 387-8	4	4
515	Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. <i>International Journal of Coal Geology</i> , 2016 , 167, 157-175	5.5	32
514	Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. <i>Science of the Total Environment</i> , 2016 , 571, 237-50	10.2	67
513	Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. <i>Brain and Behavior</i> , 2016 , 6, e00467	3.4	32
512	Physical and chemical changes in coal fly ash during acidic or neutral wastes treatment, and its effect on the fixation process. <i>Fuel</i> , 2016 , 184, 69-80	7.1	20
511	Determinants of aerosol lung-deposited surface area variation in an urban environment. <i>Science of the Total Environment</i> , 2015 , 517, 38-47	10.2	35
510	Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010. Atmospheric Environment, 2015 , 117, 234-241	5.3	40
509	Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona. <i>Science of the Total Environment</i> , 2015 , 532, 344-52	10.2	15
508	New particle formation at ground level and in the vertical column over the Barcelona area. <i>Atmospheric Research</i> , 2015 , 164-165, 118-130	5.4	29
507	Exposure to airborne particulate matter in the subway system. <i>Science of the Total Environment</i> , 2015 , 511, 711-22	10.2	99
506	Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. <i>PLoS Medicine</i> , 2015 , 12, e1001792	11.6	293
505	Green spaces and cognitive development in primary schoolchildren. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7937-42	11.5	393
504	Environmental and health benefits from designating the Marmara Sea and the Turkish Straits as an emission control area (ECA). <i>Environmental Science & Environmental E</i>	10.3	44
503	Review of the efficacy of low emission zones to improve urban air quality in European cities. <i>Atmospheric Environment</i> , 2015 , 111, 161-169	5.3	136
502	Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. <i>Atmospheric Environment</i> , 2015 , 106, 392-401	5.3	26

(2015-2015)

501	Industrial sources of primary and secondary organic aerosols in two urban environments in Spain. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10413-24	5.1	14
500	Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 11526-42	5.1	46
499	Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999\(\mathbb{Q}\)012 period. Atmospheric Environment, 2015, 109, 205-216	5.3	23
498	The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions. <i>Journal of Environmental Sciences</i> , 2015 , 32, 72-80	6.4	7
497	The association between greenness and traffic-related air pollution at schools. <i>Science of the Total Environment</i> , 2015 , 523, 59-63	10.2	114
496	Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. Journal of Aerosol Science, 2015 , 90, 103-113	4.3	47
495	Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives. <i>Environmental Science & Environmental Science & Environm</i>	10.3	9
494	Distribution and pollution assessment of trace elements in marine sediments in the Quintero Bay (Chile). <i>Marine Pollution Bulletin</i> , 2015 , 99, 256-63	6.7	27
493	Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. <i>Environmental Science & Environmental Science & Environ</i>	- 3 8·3	16
492	Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. <i>Journal of Aerosol Science</i> , 2015 , 88, 48-57	4.3	23
491	Real-time indoor and outdoor measurements of black carbon at primary schools. <i>Atmospheric Environment</i> , 2015 , 120, 417-426	5.3	20
490	Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. <i>Environmental Research</i> , 2015 , 142, 495-510	7.9	105
489	Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. <i>Atmospheric Environment</i> , 2015 , 120, 15-27	5.3	45
488	Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. <i>Construction and Building Materials</i> , 2015 , 95, 910-921	6.7	50
487	Analysis of predictors related to soil contamination in recreational areas of Romania. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18885-93	5.1	5
486	The role of PIXE in the AIRUSE project E esting and development of air quality mitigation measures in Southern Europe\(\Bar\) <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 363, 92-98	1.2	18
485	Arsenic species in atmospheric particulate matter as tracer of the air quality of Do ll na Natural Park (SW Spain). <i>Chemosphere</i> , 2015 , 119, 1296-1303	8.4	23
484	The risks of acute exposure to black carbon in Southern Europe: results from the MED-PARTICLES project. <i>Occupational and Environmental Medicine</i> , 2015 , 72, 123-9	2.1	40

483	PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. <i>Atmospheric Research</i> , 2015 , 155, 102-117	5.4	95
482	Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: results from the MED-PARTICLES project. <i>Environment International</i> , 2015 , 75, 151-8	12.9	80
481	Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. <i>Atmospheric Research</i> , 2015 , 153, 134-144	5.4	58
480	Atmospheric Particle Size Distributions in the Spanish Network of Environmental DMAs (REDMAAS). <i>IOP Conference Series: Earth and Environmental Science</i> , 2015 , 28, 012001	0.3	1
479	Joint analysis of continental and regional background environments in the western Mediterranean: PM₁ and PM₁₀ concentrations and composition. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1129-1145	6.8	22
478	Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5929-5945	6.8	118
477	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6379-6391	6.8	50
476	Modulation of Saharan dust export by the North African dipole. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7471-7486	6.8	77
475	Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project. <i>International Journal of Public Health</i> , 2015 , 60, 619-27	4	155
474	Road traffic and sandy playground influence on ambient pollutants in schools. <i>Atmospheric Environment</i> , 2015 , 111, 94-102	5.3	5
473	Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project. <i>Occupational and Environmental Medicine</i> , 2015 , 72, 323-9	2.1	61
472	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2935-2951	6.8	54
471	Reducing the health effect of particles from agriculture. <i>Lancet Respiratory Medicine,the</i> , 2015 , 3, 831-2	35.1	17
470	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. <i>Atmospheric Environment</i> , 2015 , 123, 240-250	5.3	54
469	Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. <i>Handbook of Environmental Chemistry</i> , 2015 , 159-179	0.8	1
468	Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. <i>Atmospheric Environment</i> , 2015 , 123, 220-228	5.3	51
467	A new look at inhalable metalliferous airborne particles on rail subway platforms. <i>Science of the Total Environment</i> , 2015 , 505, 367-75	10.2	77
466	A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. <i>Science of the Total Environment</i> , 2015 , 512-513, 371-380	10.2	59

465	Urban NH3 levels and sources in six major Spanish cities. Chemosphere, 2015, 119, 769-777	8.4	37
464	Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. <i>Atmospheric Environment</i> , 2015 , 106, 129-138	5.3	82
463	Characterization of exposure to carbon nanotubes in an industrial setting. <i>Annals of Occupational Hygiene</i> , 2015 , 59, 586-99		14
462	Variations in school playground and classroom atmospheric particulate chemistry. <i>Atmospheric Environment</i> , 2014 , 91, 162-171	5.3	25
461	Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires. <i>Atmospheric Environment</i> , 2014 , 89, 85-92	5.3	32
460	New Directions: Cleaning the air: Will the European Commission's clean air policy package of December 2013 deliver?. <i>Atmospheric Environment</i> , 2014 , 91, 172-174	5.3	6
459	Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. <i>Journal of Hazardous Materials</i> , 2014 , 265, 242-52	12.8	46
458	Natural sources of atmospheric aerosols influencing air quality across Europe. <i>Science of the Total Environment</i> , 2014 , 472, 825-33	10.2	54
457	Effects of road dust suppressants on PM levels in a Mediterranean urban area. <i>Environmental Science & Environmental &</i>	10.3	38
456	Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. <i>Science of the Total Environment</i> , 2014 , 494-495, 283-9	10.2	50
455	Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. <i>Atmospheric Environment</i> , 2014 , 89, 268-281	5.3	51
454	Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. <i>Atmospheric Environment</i> , 2014 , 88, 320-329	5.3	27
453	New Directions: The future of European urban air quality monitoring. <i>Atmospheric Environment</i> , 2014 , 87, 258-260	5.3	15
452	Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 9234-41	5.1	52
451	Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. <i>Atmospheric Environment</i> , 2014 , 98, 271-282	5.3	26
450	Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain). <i>Environmental Pollution</i> , 2014 , 188, 109-17	9.3	28
449	Urban air quality: the challenge of traffic non-exhaust emissions. <i>Journal of Hazardous Materials</i> , 2014 , 275, 31-6	12.8	221
448	Impact of maritime transport emissions on coastal air quality in Europe. <i>Atmospheric Environment</i> , 2014 , 90, 96-105	5.3	304

447	Sources of indoor and outdoor PM2.5 concentrations in primary schools. <i>Science of the Total Environment</i> , 2014 , 490, 757-65	10.2	119
446	Assessment of personal exposure to particulate air pollution during commuting in European citiesrecommendations and policy implications. <i>Science of the Total Environment</i> , 2014 , 490, 785-97	10.2	104
445	Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. <i>Atmospheric Environment</i> , 2014 , 92, 461-468	5.3	105
444	2001-2012 trends on air quality in Spain. Science of the Total Environment, 2014 , 490, 957-69	10.2	95
443	Particulate matter and gaseous pollutants in the Mediterranean Basin: results from the MED-PARTICLES project. <i>Science of the Total Environment</i> , 2014 , 488-489, 297-315	10.2	25
442	Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. <i>Environment International</i> , 2014 , 69, 200-12	12.9	190
441	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 4978-501	o ^{4.4}	33
440	Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2973-2986	6.8	26
439	Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4459-4472	6.8	52
438	Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3533-3544	6.8	83
437	Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6443-6460	6.8	27
436	African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6759-6775	6.8	100
435	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern Pyrenees, 1570 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4279-4295	6.8	28
434	Outdoor and indoor UFP in primary schools across Barcelona. <i>Science of the Total Environment</i> , 2014 , 493, 943-53	10.2	47
433	Particulate air pollution and preeclampsia: a source-based analysis. <i>Occupational and Environmental Medicine</i> , 2014 , 71, 570-7	2.1	34
432	IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. <i>Fuel Processing Technology</i> , 2014 , 124, 222-227	7.2	30
431	New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. <i>International Journal of Coal Geology</i> , 2014 , 125, 10-21	5.5	38
430	Origin of PM10 Pollution Episodes in an Industrialized Mega-City in Central China. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 338-346	4.6	6

429	Road Dust Emission Sources and Assessment of Street Washing Effect. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 734-743	4.6	26	
428	Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. <i>Atmospheric Environment</i> , 2013 , 68, 33-44	5.3	85	
427	Mechanisms of Climate Variability, Air Quality and Impacts of Atmospheric Constituents in the Mediterranean Region. <i>Advances in Global Change Research</i> , 2013 , 119-156	1.2	2	
426	Ambient air SO2 patterns in 6 European cities. <i>Atmospheric Environment</i> , 2013 , 79, 236-247	5.3	37	
425	African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. <i>Atmospheric Research</i> , 2013 , 127, 117-129	5.4	56	
424	Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. <i>Science of the Total Environment</i> , 2013 , 463-464, 875-83	10.2	52	
423	PMIand PMIBources at an insular location in the western Mediterranean by using source apportionment techniques. <i>Science of the Total Environment</i> , 2013 , 456-457, 267-77	10.2	32	
422	Case studies of new particle formation and evaporation processes in the western Mediterranean regional background. <i>Atmospheric Environment</i> , 2013 , 81, 651-659	5.3	18	
421	Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. <i>Atmospheric Environment</i> , 2013 , 69, 86-93	5.3	17	
420	Air quality comparison between two European ceramic tile clusters. <i>Atmospheric Environment</i> , 2013 , 74, 311-319	5.3	15	
419	Personal, indoor and outdoor air pollution levels among pregnant women. <i>Atmospheric Environment</i> , 2013 , 64, 287-295	5.3	36	
418	Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. <i>International Journal of Coal Geology</i> , 2013 , 116-117, 75-92	5.5	74	
417	Influence of an aluminium additive in aqueous and solid speciation of elements in flue gas desulphurisation (FGD) system. <i>Energy</i> , 2013 , 50, 438-444	7.9	11	
416	Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: primary and aged contributions. <i>Science of the Total Environment</i> , 2013 , 463-464, 497-507	10.2	53	
415	New Directions: Four to two Powered two wheelers changing the European urban motor vehicle census. <i>Atmospheric Environment</i> , 2013 , 77, 1083-1084	5.3	5	
414	An evaluation of mass, number concentration, chemical composition and types of particles in a cafeteria before and after the passage of an antismoking law. <i>Particuology</i> , 2013 , 11, 527-532	2.8	8	
413	Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. <i>Atmospheric Environment</i> , 2013 , 72, 81-88	5.3	61	
412	Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2013 , 65, 1924.	33.3	19	

411	Road Traffic: A Major Source of Particulate Matter in Europe. <i>Handbook of Environmental Chemistry</i> , 2013 , 165-193	0.8	9
410	Impact of traffic intensity and pavement aggregate size on road dust particles loading. <i>Atmospheric Environment</i> , 2013 , 77, 711-717	5.3	30
409	Short-term variability of mineral dust, metals and carbon emission from road dust resuspension. <i>Atmospheric Environment</i> , 2013 , 74, 134-140	5.3	46
408	Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. <i>Atmospheric Environment</i> , 2013 , 71, 15-25	5.3	56
407	Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes. <i>Fuel</i> , 2013 , 105, 314-317	7.1	38
406	Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction. <i>Fuel</i> , 2013 , 112, 450-458	7.1	10
405	Overview of the meteorology and transport patterns during the DAURE field campaign and their impact to PM observations. <i>Atmospheric Environment</i> , 2013 , 77, 607-620	5.3	18
404	Biochar Derived from Agricultural and Forestry Residual Biomass: Characterization and Potential Application for Enzymes Immobilization. <i>Journal of Biobased Materials and Bioenergy</i> , 2013 , 7, 724-732	1.4	27
403	Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. <i>Environmental Health Perspectives</i> , 2013 , 121, 1026-33	8.4	152
402	Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project. <i>Environmental Health Perspectives</i> , 2013 , 121, 932-8	8.4	154
401	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6185-6206	6.8	80
400	On the spatial distribution and evolution of ultrafine particles in Barcelona. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 741-759	6.8	64
399	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8991-9019	6.8	22
398	Hourly elemental concentrations in PM_{2.5} aerosols sampled simultaneously at urban background and road site during SAPUSS diurnal variations and PMF receptor modelling. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4375-4392	6.8	118
397	Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10353-10371	6.8	45
396	The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12135-12154	6.8	76
395	African dust outbreaks over the Mediterranean Basin during 2001\(\mathbb{D}\)011: PM ₁₀ concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmospheric Chemistry and Physics, 2013, 13, 1395-1410	6.8	280
394	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmospheric Chemistry and Physics, 2013, 13, 1411-1424	6.8	26

393	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4983-4996	6.8	20
392	Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5173-5187	6.8	50
391	Mitigation strategies: Castellii, Spain 2013 , 150-160		1
390	PM: environmental monitoring and mitigation 2013 , 2-6		
389	Mitigation strategies: Barcelona, Spain 2013 , 106-120		
388	Future perspective and research priorities 2013 , 162-175		
387	Spatio-temporal variability of concentrations and speciation of particulate matter across Spain in the CALIOPE modeling system. <i>Atmospheric Environment</i> , 2012 , 46, 376-396	5.3	53
386	Variation of PM2.5 concentrations in relation to street washing activities. <i>Atmospheric Environment</i> , 2012 , 54, 465-469	5.3	10
385	Urban NH3 levels and sources in a Mediterranean environment. <i>Atmospheric Environment</i> , 2012 , 57, 153	3- 1 .64	88
384	Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999 2 008 temporal trend of particulate matter. <i>Atmospheric Environment</i> , 2012 , 57, 175-185	5.3	35
383	Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. <i>Atmospheric Environment</i> , 2012 , 59, 426-436	5.3	60
382	Organic compounds in aerosols from selected European sites Biogenic versus anthropogenic sources. <i>Atmospheric Environment</i> , 2012 , 59, 243-255	5.3	50
381	Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. <i>Science of the Total Environment</i> , 2012 , 424, 182-92	10.2	23
380	Biomass burning contributions to urban aerosols in a coastal Mediterranean city. <i>Science of the Total Environment</i> , 2012 , 427-428, 175-90	10.2	113
379	Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution?. <i>Science of the Total Environment</i> , 2012 , 427-428, 191-202	10.2	81
378	Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. <i>Science of the Total Environment</i> , 2012 , 430, 34-47	10.2	128
377	Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 21246-9	11.5	85
376	Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. <i>Atmospheric Environment</i> , 2012 , 62, 352-358	5.3	41

375	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. Journal of Environmental Monitoring, 2012 , 14, 2718-28		15
374	Open air mineral treatment operations and ambient air quality: assessment and source apportionment. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2939-51		2
373	Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization. <i>Environmental Science & Environmental Science & Envi</i>	10.3	11
372	Unusual speciation and retention of Hg at a coal-fired power plant. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 7890-7	10.3	11
371	Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. <i>Atmospheric Environment</i> , 2012 , 61, 482-489	5.3	44
370	Emission factors from road dust resuspension in a Mediterranean freeway. <i>Atmospheric Environment</i> , 2012 , 61, 580-587	5.3	48
369	Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. <i>Atmospheric Environment</i> , 2012 , 61, 507-517	5.3	50
368	African dust source regions for observed dust outbreaks over the Subtropical Eastern North Atlantic region, above 25°N. <i>Journal of Arid Environments</i> , 2012 , 78, 100-109	2.5	24
367	High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. <i>International Journal of Coal Geology</i> , 2012 , 99, 1-15	5.5	61
366	A multidisciplinary approach to characterise exposure risk and toxicological effects of PMIand PMIBamples in urban environments. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 78, 327-35	7	66
365	Health effects from Sahara dust episodes in Europe: literature review and research gaps. <i>Environment International</i> , 2012 , 47, 107-14	12.9	150
364	Saharan dust, particulate matter and cause-specific mortality: a case-crossover study in Barcelona (Spain). <i>Environment International</i> , 2012 , 48, 150-5	12.9	106
363	Psychoactive Substances in Airborne Particles in the Urban Environment. <i>Handbook of Environmental Chemistry</i> , 2012 , 435-460	0.8	1
362	Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		84
361	The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant. <i>Fuel</i> , 2012 , 102, 773-788	7.1	37
3 60	A review of methods for long term in situ characterization of aerosol dust. <i>Aeolian Research</i> , 2012 , 6, 55-74	3.9	45
359	A note on particulate matter, total mortality and Saharan dust in Madrid. <i>Science of the Total Environment</i> , 2012 , 441, 290	10.2	1
358	Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		12

(2011-2012)

357	Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system. <i>Fuel</i> , 2012 , 92, 145-157	7.1	95
356	Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. <i>Fuel</i> , 2012 , 95, 446-456	7.1	88
355	Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. <i>Fuel</i> , 2012 , 95, 272-281	7.1	74
354	Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. <i>International Journal of Coal Geology</i> , 2012 , 94, 314-325	5.5	115
353	Leaching behaviour of elements from coal combustion fly ash: An overview. <i>International Journal of Coal Geology</i> , 2012 , 94, 54-66	5.5	463
352	Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area, Sichuan Province, China. <i>International Journal of Coal Geology</i> , 2012 , 94, 271-282	5.5	64
351	Weak Pressure Gradient over the Iberian Peninsula and African Dust Outbreaks: A New Dust Long-Transport Scenario. <i>Bulletin of the American Meteorological Society</i> , 2012 , 93, 1125-1132	6.1	14
350	Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10693-10707	6.8	58
349	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1649-1665	6.8	353
348	Variability of levels and composition of PM₁₀ and PM_{2.5} in the Barcelona metro system. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5055-5076	6.8	138
347	Summer ammonia measurements in a densely populated Mediterranean city. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7557-7575	6.8	45
346	Trends of particulate matter (PM _{2.5}) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002\(\mathbb{Q}\)010). Atmospheric Chemistry and Physics, 2012, 12, 8341-8357	6.8	91
345	Effects of local and Saharan particles on cardiovascular disease mortality. <i>Epidemiology</i> , 2012 , 23, 768-9	3.1	20
344	Geochemical controls on leaching of lignite-fired combustion by-products from Greece. <i>Applied Geochemistry</i> , 2011 , 26, 1599-1606	3.5	36
343	Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. <i>Atmospheric Research</i> , 2011 , 99, 518-527	5.4	52
342	Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). <i>Atmospheric Research</i> , 2011 , 102, 191-205	5.4	149
341	Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999\(\textbf{0}008\). Procedia Environmental Sciences, 2011 , 4, 198-208		16
340	Are Saharan dust intrusions increasing the risk of meningococcal meningitis?. <i>International Journal of Infectious Diseases</i> , 2011 , 15, e503	10.5	19

339	BIOMASS BURNING CONTRIBUTIONS TO URBAN AEROSOLS IN A COASTAL MEDITERRANEAN CITY. <i>ISEE Conference Abstracts</i> , 2011 , 2011,	2.9	2
338	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6207-6227	6.8	269
337	Variability of aerosol optical properties in the Western Mediterranean Basin. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8189-8203	6.8	73
336	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12067-12	0848	133
335	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2917-2931	6.8	84
334	Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9415-9430	6.8	72
333	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6663-6685	6.8	183
332	Workplace exposure to traffic-derived nanoscaled particulates. <i>Journal of Physics: Conference Series</i> , 2011 , 304, 012006	0.3	
331	Levels, composition and source apportionment of rural background PM10 in western Mexico (state of Colima). <i>Atmospheric Pollution Research</i> , 2011 , 2, 409-417	4.5	13
330	. Tellus, Series B: Chemical and Physical Meteorology, 2011 , 63, 255-265	3.3	26
329	Study of boron behaviour in two Spanish coal combustion power plants. <i>Journal of Environmental Management</i> , 2011 , 92, 2586-9	7.9	6
328	Simple estimates of vehicle-induced resuspension rates. <i>Journal of Environmental Management</i> , 2011 , 92, 2855-9	7.9	11
327	Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain). <i>Science of the Total Environment</i> , 2011 , 412-413, 386-9	10.2	86
326	Cocaine and other illicit drugs in airborne particulates in urban environments: a reflection of social conduct and population size. <i>Environmental Pollution</i> , 2011 , 159, 1241-7	9.3	31
325	Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. <i>Atmospheric Environment</i> , 2011 , 45, 641-649	5.3	70
324	Road dust contribution to PM levels Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. <i>Atmospheric Environment</i> , 2011 , 45, 2193-2201	5.3	46
323	Sources and variability of inhalable road dust particles in three European cities. <i>Atmospheric Environment</i> , 2011 , 45, 6777-6787	5.3	234
322	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. <i>Atmospheric Environment</i> , 2011 , 45, 5282-5	52 9 3	38

321	Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. <i>Chemosphere</i> , 2011 , 85, 565-70	8.4	36
32 0	Leaching of potential hazardous elements of coal cleaning rejects. <i>Environmental Monitoring and Assessment</i> , 2011 , 175, 109-26	3.1	93
319	Objective identification of synoptic meteorological patterns favouring African dust intrusions into the marine boundary layer of the subtropical eastern north Atlantic region. <i>Meteorology and Atmospheric Physics</i> , 2011 , 113, 109-124	2	25
318	Procedural uncertainties of Proctor compaction tests applied on MSWI bottom ash. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1639-44	12.8	20
317	Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. <i>Fuel Processing Technology</i> , 2011 , 92, 1764-1775	7.2	60
316	Development of a non-conventional sorbent from fly ash and its potential use in acid wastewater neutralization and heavy metal removal. <i>Chemical Engineering Journal</i> , 2011 , 166, 896-905	14.7	18
315	Manganese in the urban atmosphere: identifying anomalous concentrations and sources. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 173-83	5.1	34
314	Source apportionment of PM(10) and PM(2.5) at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 260-9	5.1	190
313	Modelling Arsenic, Lead, Cadmium and Nickel Ambient Air Concentrations in Spain 2011,		5
312	Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1276-87		35
311	Saharan dust episodes and pregnancy. Journal of Environmental Monitoring, 2011, 13, 3222-8		18
310	Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. <i>International Journal of Coal Geology</i> , 2011 , 85, 2-22	5.5	104
309	Trace element affinities in two high-Ge coals from China. Fuel, 2011, 90, 240-247	7.1	41
308	Brazilian coal mining residues and sulphide oxidation by Fenton's reaction: an accelerated weathering procedure to evaluate possible environmental impact. <i>Journal of Hazardous Materials</i> , 2011 , 186, 516-25	12.8	96
307	Size distribution and chemical composition of metalliferous stack emissions in the San Roque petroleum refinery complex, southern Spain. <i>Journal of Hazardous Materials</i> , 2011 , 190, 713-22	12.8	35
306	The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. <i>Environmental Health Perspectives</i> , 2011 , 119, 1781-7	8.4	143
305	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2409-2419	4	55
304	Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. <i>Aerosol Science and Technology</i> , 2010 , 44, 487-	4949	176

303	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols 2010 ,		2
302	Solid Particulate Matter in the Atmosphere. <i>Elements</i> , 2010 , 6, 215-222	3.8	78
301	Assessing the performance of methods to detect and quantify African dust in airborne particulates. <i>Environmental Science & Damp; Technology</i> , 2010 , 44, 8814-20	10.3	31
300	Drugs of abuse in airborne particulates in urban environments. <i>Environment International</i> , 2010 , 36, 527	7-3<u>4</u>. 9	36
299	Geochemical characterization of Cu-smelter emission plumes with impact in an urban area of SW Spain. <i>Atmospheric Research</i> , 2010 , 96, 590-601	5.4	42
298	High concentrations of heavy metals in PM from ceramic factories of Southern Spain. <i>Atmospheric Research</i> , 2010 , 96, 633-644	5.4	32
297	Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 854-62		41
296	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5315-5341	6.8	157
295	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9615-9630	6.8	46
294	Effect of fireworks events on urban background trace metal aerosol concentrations: is the cocktail worth the show?. <i>Journal of Hazardous Materials</i> , 2010 , 183, 945-9	12.8	60
293	Intense winter atmospheric pollution episodes affecting the Western Mediterranean. <i>Science of the Total Environment</i> , 2010 , 408, 1951-9	10.2	67
292	A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. <i>Science of the Total Environment</i> , 2010 , 408, 3070-84	10.2	164
291	A comprehensive assessment of PM emissions from paved roads: real-world Emission Factors and intense street cleaning trials. <i>Science of the Total Environment</i> , 2010 , 408, 4309-18	10.2	83
290	Variations in vanadium, nickel and lanthanoid element concentrations in urban air. <i>Science of the Total Environment</i> , 2010 , 408, 4569-79	10.2	127
289	Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. <i>Science of the Total Environment</i> , 2010 , 408, 5117-22	10.2	55
288	Impact of fugitive emissions in ambient PM levels and composition: a case study in Southeast Spain. <i>Science of the Total Environment</i> , 2010 , 408, 4999-5009	10.2	37
287	A European aerosol phenomenology B: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. <i>Atmospheric Environment</i> , 2010 , 44, 1308-1320	5.3	563
286	Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. <i>Atmospheric Environment</i> , 2010 , 44, 1587-1596	5.3	76

285	Sea salt concentrations across the European continent. <i>Atmospheric Environment</i> , 2010 , 44, 2434-2442	5.3	67
284	Physicochemical variations in atmospheric aerosols recorded at sea onboard the AtlanticMediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components. <i>Atmospheric Environment</i> , 2010 , 44, 2552-2562	5.3	8
283	Physicochemical variations in atmospheric aerosols recorded at sea onboard the AtlanticMediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM10 trace element geochemistry. <i>Atmospheric Environment</i> , 2010 , 44, 2563-2576	5.3	32
282	Variation of the mixing state of Saharan dust particles with atmospheric transport. <i>Atmospheric Environment</i> , 2010 , 44, 3135-3146	5.3	64
281	Using PM10 geochemical maps for defining the origin of atmospheric pollution in Andalusia (Southern Spain). <i>Atmospheric Environment</i> , 2010 , 44, 4595-4605	5.3	36
2 80	Monitoring of sources and atmospheric processes controlling air quality in an urban Mediterranean environment. <i>Atmospheric Environment</i> , 2010 , 44, 4879-4890	5.3	30
279	A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. <i>Atmospheric Environment</i> , 2010 , 44, 5112-5121	5.3	10
278	The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. <i>Journal of Hazardous Materials</i> , 2010 , 176, 623-8	12.8	63
277	Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. <i>Journal of Hazardous Materials</i> , 2010 , 181, 82-90	12.8	77
276	X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes. <i>Fuel</i> , 2010 , 89, 2971-2976	7.1	49
275	Partitioning of elements in a entrained flow IGCC plant: Influence of selected operational conditions. <i>Fuel</i> , 2010 , 89, 3250-3261	7.1	31
274	Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal. <i>Fuel</i> , 2010 , 89, 3012-3021	7.1	20
273	Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. <i>International Journal of Coal Geology</i> , 2010 , 82, 51-67	5.5	200
272	Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. <i>Coal Combustion and Gasification Products</i> , 2010 , 2, 51-65		30
271	Origin and SEM analysis of aerosols in the high mountain of Tenerife (Canary Islands). <i>Natural Science</i> , 2010 , 02, 1119-1129	0.5	3
270	Fine particle receptor modeling in the atmosphere of Mexico City. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 1417-28	2.4	10
269	Identification of chemical tracers in the characterisation and source apportionment of inhalable inorganic airborne particles: an overview. <i>Biomarkers</i> , 2009 , 14 Suppl 1, 17-22	2.6	20
268	An introductory TEM study of Fe-nanominerals within coal fly ash. <i>Science of the Total Environment</i> , 2009 , 407, 4972-4	10.2	103

267	Spatial and chemical patterns of PM10 in road dust deposited in urban environment. <i>Atmospheric Environment</i> , 2009 , 43, 1650-1659	5.3	331
266	Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. <i>Atmospheric Environment</i> , 2009 , 43, 2770-2780	5.3	404
265	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. <i>Atmospheric Environment</i> , 2009 , 43, 3989-3997	5.3	102
264	Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. <i>Atmospheric Environment</i> , 2009 , 43, 4407-4415	5.3	160
263	Controls on hourly variations in urban background air pollutant concentrations. <i>Atmospheric Environment</i> , 2009 , 43, 4178-4186	5.3	23
262	African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. <i>Atmospheric Environment</i> , 2009 , 43, 4266-4277	5.3	318
261	Atmospheric composition change research: Time to go post-normal?. <i>Atmospheric Environment</i> , 2009 , 43, 5423-5432	5.3	9
260	Evaluating urban PM10 pollution benefit induced by street cleaning activities. <i>Atmospheric Environment</i> , 2009 , 43, 4472-4480	5.3	47
259	Characterization of atmospheric aerosols by SEM in a rural area in the western part of Maico and its relation with different pollution sources. <i>Atmospheric Environment</i> , 2009 , 43, 6159-6167	5.3	35
258	Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal of Environmental Management, 2009 , 90, 2558-67	7.9	38
257	Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments. <i>Environmental Geology</i> , 2009 , 57, 411-420		12
256	Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods. <i>Journal of Environmental Management</i> , 2009 , 91, 133-41	7.9	17
255	Coal fly ash-slag-based geopolymers: microstructure and metal leaching. <i>Journal of Hazardous Materials</i> , 2009 , 166, 561-6	12.8	158
254	Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods. <i>Journal of Hazardous Materials</i> , 2009 , 167, 582-8	12.8	39
253	Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. <i>International Journal of Coal Geology</i> , 2009 , 78, 16-26	5.5	71
252	Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. <i>Fuel</i> , 2009 , 88, 1185-1193	7.1	96
251	Size fractionate particulate matter, vehicle traffic, and case-specific daily mortality in Barcelona, Spain. <i>Environmental Science & Environmental Sc</i>	10.3	112
250	Chemical tracers of particulate emissions from commercial shipping. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 7472-7	10.3	176

(2008-2009)

249	Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 1296-307	2.4	58
248	Characterization and origin of EC and OC particulate matter near the Do l ana National Park (SW Spain). <i>Environmental Research</i> , 2009 , 109, 671-81	7.9	45
247	Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. <i>Atmospheric Research</i> , 2009 , 94, 285-299	5.4	81
246	Geochemistry of regional background aerosols in the Western Mediterranean. <i>Atmospheric Research</i> , 2009 , 94, 422-435	5.4	76
245	Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. <i>Environmental Science & Environmental Science & Environm</i>	10.3	80
244	Profiling transient daytime peaks in urban air pollutants: city centre traffic hotspot versus urban background concentrations. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 1535-42		21
243	Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. <i>Journal of Hazardous Materials</i> , 2009 , 166, 94-102	12.8	35
242	Determination of drugs of abuse in airborne particles by pressurized liquid extraction and liquid chromatography-electrospray-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 4382-8	7.8	55
241	Variability in regional background aerosols within the Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4575-4591	6.8	173
240	African dust influence on ambient PM levels in South-Western Europe (Spain and Portugal): A quantitative approach to support implementation of Air Quality Directives. <i>IOP Conference Series:</i> Earth and Environmental Science, 2009, 7, 012018	0.3	2
239	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999\(\mathbb{Q}\)005. Atmospheric Environment, 2008 , 42, 3964-3979	5.3	258
238	Characterising exposure to PM aerosols for an epidemiological study. <i>Atmospheric Environment</i> , 2008 , 42, 1552-1568	5.3	55
237	Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. <i>Atmospheric Environment</i> , 2008 , 42, 1941-1957	5.3	86
236	Partitioning of major and trace components in PM10BM2.5BM1 at an urban site in Southern Europe. <i>Atmospheric Environment</i> , 2008 , 42, 1677-1691	5.3	205
235	Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. <i>Atmospheric Environment</i> , 2008 , 42, 3820-3832	5.3	119
234	Arsenic speciation study of PM2.5 in an urban area near a copper smelter. <i>Atmospheric Environment</i> , 2008 , 42, 6487-6495	5.3	60
233	Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.510 concentrations in a coastal city. <i>Atmospheric Environment</i> , 2008 , 42, 6523-6534	5.3	70
232	Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. <i>Atmospheric Environment</i> , 2008 , 42, 7851-7861	5.3	68

231	Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. <i>Atmospheric Environment</i> , 2008 , 42, 9007-9	017	28
230	Variations of urban aerosols in the western Mediterranean. <i>Atmospheric Environment</i> , 2008 , 42, 9052-9	0 6 23	90
229	New Directions: Legislative considerations for controlling exposure to atmospheric aerosols in rural areas. <i>Atmospheric Environment</i> , 2008 , 42, 8979-8984	5.3	5
228	Comparison between laboratory and field leachability of MSWI bottom ash as a road material. <i>Science of the Total Environment</i> , 2008 , 389, 10-9	10.2	53
227	A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. <i>Science of the Total Environment</i> , 2008 , 390, 495-506	10.2	65
226	Risk minimisation of FGD gypsum leachates by incorporation of aluminium sulphate. <i>Science of the Total Environment</i> , 2008 , 406, 69-75	10.2	20
225	Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean. <i>Science of the Total Environment</i> , 2008 , 407, 527-40	10.2	109
224	Lanthanoid geochemistry of urban atmospheric particulate matter. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 6502-7	10.3	77
223	Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000\(\textbf{Z}\)000 (2		118
222	Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 2008 , 269-284		6
221	Trace element variation in size-fractionated African desert dusts. <i>Journal of Arid Environments</i> , 2008 , 72, 1034-1045	2.5	101
220	Source apportionment of particulate matter in Europe: A review of methods and results. <i>Journal of Aerosol Science</i> , 2008 , 39, 827-849	4.3	674
219	Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal. <i>Chemosphere</i> , 2008 , 71, 140-6	8.4	23
218	Trace element mobility in soils seven years after the Aznalcllar mine spill. Chemosphere, 2008, 73, 1240)- 6 8.4	22
217	Characterization of a long range transport pollution episode affecting PM in SW Spain. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 1158-71		15
216	Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 370-8		20
215	Coarse particles from Saharan dust and daily mortality. <i>Epidemiology</i> , 2008 , 19, 800-7	3.1	269
214	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 111-128	6.8	188

(2007-2008)

213	Natural and Anthropogenic Contributions to PM10 and PM2.5 in an Urban Area in the Western Mediterranean Coast. <i>Water, Air, and Soil Pollution</i> , 2008 , 192, 227-238	2.6	46
212	Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills. <i>Journal of Hazardous Materials</i> , 2008 , 153, 544-50	12.8	21
211	Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. <i>Journal of Hazardous Materials</i> , 2008 , 154, 175-83	12.8	287
210	Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. <i>International Journal of Coal Geology</i> , 2008 , 75, 93-104	5.5	212
209	Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 2008, 87, 1958-1966	57.1	53
208	Forecasting the air pollution episode potential in the Canary Islands. <i>Advances in Science and Research</i> , 2008 , 2, 21-26		6
207	Caliope: an operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands Ifirst annual evaluation and ongoing developments. <i>Advances in Science and Research</i> , 2008 , 2, 89-98		39
206	Trace element fractionation processes in resuspended mineral aerosols extracted from Australian continental surface materials. <i>Soil Research</i> , 2008 , 46, 128	1.8	10
205	PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1071-81		27
204	Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant. <i>Environmental Science & Environmental Sc</i>	10.3	25
203	Variation of soluble and insoluble calcium in red rains related to dust sources and transport patterns from North Africa to northeastern Spain. <i>Journal of Geophysical Research</i> , 2007 , 112,		33
202	The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. <i>International Journal of Coal Geology</i> , 2007 , 71, 122-128	5.5	32
201	Recovery of gallium and vanadium from gasification fly ash. <i>Journal of Hazardous Materials</i> , 2007 , 139, 413-23	12.8	107
200	Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. <i>Journal of Hazardous Materials</i> , 2007 , 142, 191-8	12.8	125
199	Use of zeolitised coal fly ash for landfill leachate treatment: a pilot plant study. <i>Waste Management</i> , 2007 , 27, 1877-83	8.6	27
198	Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. <i>Atmospheric Environment</i> , 2007 , 41, 1-17	5.3	60
197	Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. <i>Atmospheric Environment</i> , 2007 , 41, 315-326	5.3	69
196	Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. <i>Atmospheric Environment</i> , 2007 , 41, 1026-1040	5.3	33

195	Origin of the exceedances of the European daily PM limit value in regional background areas of Spain. <i>Atmospheric Environment</i> , 2007 , 41, 730-744	5.3	108
194	Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. <i>Atmospheric Environment</i> , 2007 , 41, 913-922	5.3	132
193	Levels of outdoor PM2.5, absorbance and sulphur as surrogates for personal exposures among post-myocardial infarction patients in Barcelona, Spain. <i>Atmospheric Environment</i> , 2007 , 41, 1539-1549	5.3	9
192	Source apportionment of ambient PM2.5 at five spanish centres of the european community respiratory health survey (ECRHS II). <i>Atmospheric Environment</i> , 2007 , 41, 1395-1406	5.3	57
191	Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours. <i>Atmospheric Environment</i> , 2007 , 41, 6356-6365	5.3	11
190	Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor. <i>Atmospheric Environment</i> , 2007 , 41, 6344-6355	5.3	9
189	Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. <i>Atmospheric Environment</i> , 2007 , 41, 6366-6378	5.3	39
188	Characterisation of dust material emitted during harbour operations (HADA Project). <i>Atmospheric Environment</i> , 2007 , 41, 6331-6343	5.3	24
187	Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. <i>Atmospheric Environment</i> , 2007 , 41, 5972-5983	5.3	104
186	A methodology for the quantification of the net African dust load in air quality monitoring networks. <i>Atmospheric Environment</i> , 2007 , 41, 5516-5524	5.3	157
185	Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North Atlantic Ocean. <i>Atmospheric Environment</i> , 2007 , 41, 9468-9480	5.3	37
184	PM10 speciation and determination of air quality target levels. A case study in a highly industrialized area of Spain. <i>Science of the Total Environment</i> , 2007 , 372, 382-96	10.2	38
183	Airborne particulate matter and premature deaths in urban Europe: the new WHO guidelines and the challenge ahead as illustrated by Spain. <i>European Journal of Epidemiology</i> , 2007 , 22, 1-5	12.1	22
182	Study of urban atmospheric pollution in Navarre (Northern Spain). <i>Environmental Monitoring and Assessment</i> , 2007 , 134, 137-51	3.1	13
181	Atmospheric particulate matter and air quality in the Mediterranean: a review. <i>Environmental Chemistry Letters</i> , 2007 , 5, 1-7	13.3	52
180	Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. <i>International Journal of Coal Geology</i> , 2007 , 71, 263-275	5.5	41
179	Total mercury in the hair of children by combustion atomic absorption spectrometry (Comb-AAS). <i>Journal of Analytical Toxicology</i> , 2007 , 31, 144-9	2.9	34
178	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign 2007 ,		3

(2006-2007)

177	A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2217	-2232	118
176	Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain. <i>Environmental Research</i> , 2007 , 103, 305-16	7.9	54
175	Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. <i>Chemosphere</i> , 2007 , 66, 1485-93	8.4	85
174	Stabilization of FGD gypsum for its disposal in landfills using amorphous aluminium oxide as a fluoride retention additive. <i>Chemosphere</i> , 2007 , 69, 295-302	8.4	24
173	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. <i>Atmospheric Environment</i> , 2007 , 41, 7219-7231	5.3	330
172	Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. <i>Environmental Geology</i> , 2006 , 51, 121-132		34
171	Ion flotation of germanium from fly ash aqueous leachates. <i>Chemical Engineering Journal</i> , 2006 , 118, 69-75	14.7	62
170	Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. <i>Atmospheric Environment</i> , 2006 , 40, 2180-2193	5.3	92
169	Controlling influences on daily fluctuations of inhalable particles and gas concentrations: Local versus regional and exotic atmospheric pollutants at Puertollano, Spain. <i>Atmospheric Environment</i> , 2006 , 40, 3207-3218	5.3	19
168	Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. <i>Atmospheric Environment</i> , 2006 , 40, 6791-6803	5.3	109
167	Influence of Sampling Artefacts on Measured PM, OC, and EC Levels in Carbonaceous Aerosols in an Urban Area. <i>Aerosol Science and Technology</i> , 2006 , 40, 107-117	3.4	68
166	Mass Balance of Major and Trace Elements in a Coal-Fired Power Plant. <i>Energy Sources, Part A:</i> Recovery, Utilization and Environmental Effects, 2006 , 28, 1311-1320	1.6	11
165	Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in central China. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 1049-59		53
164	Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. <i>Journal of Geophysical Research</i> , 2006 , 111,		91
163	PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 1060-8		23
162	Identification and chemical characterization of industrial particulate matter sources in southwest Spain. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 993-1006	2.4	69
161	Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. <i>Chemosphere</i> , 2006 , 62, 171-80	8.4	151
160	Chemical characterisation of PM episodes in NE Spain. <i>Chemosphere</i> , 2006 , 62, 947-56	8.4	46

159	Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. <i>Chemosphere</i> , 2006 , 65, 261-70	8.4	294
158	Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. <i>Chemosphere</i> , 2006 , 65, 2411-8	8.4	95
157	Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products. <i>Chemosphere</i> , 2006 , 65, 2009-17	8.4	119
156	Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. <i>International Journal of Coal Geology</i> , 2006 , 66, 119-136	5.5	99
155	Condensing species from flue gas in Puertollano gasification power plant, Spain. Fuel, 2006, 85, 2229-22	2 4 21	20
154	Concentration and Sources of PM10 and its Constituents in Alsasua, Spain. <i>Water, Air, and Soil Pollution</i> , 2006 , 174, 385-404	2.6	23
153	Air masses and aerosols chemical components in the free troposphere at the subtropical northeast atlantic region. <i>Journal of Atmospheric Chemistry</i> , 2006 , 53, 63-90	3.2	27
152	Variations in Fly Ash Composition from the Soma Power Plant, Turkey. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2005 , 27, 1473-1481		7
151	Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. <i>Environmental Science & Environmental & Envir</i>	10.3	26
150	Wet and dry African dust episodes over eastern Spain. <i>Journal of Geophysical Research</i> , 2005 , 110,		181
150 149	Wet and dry African dust episodes over eastern Spain. <i>Journal of Geophysical Research</i> , 2005 , 110, Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351	- † 3 <u>/</u> 63	
		- †3 63 7.1	
149	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351	,	203
149	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351 Speciation of major and selected trace elements in IGCC fly ash. <i>Fuel</i> , 2005 , 84, 1364-1371	7.1	203
149 148 147	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351 Speciation of major and selected trace elements in IGCC fly ash. <i>Fuel</i> , 2005 , 84, 1364-1371 Ge extraction from gasification fly ash. <i>Fuel</i> , 2005 , 84, 1384-1392	7.1 7.1	2035473
149 148 147 146	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351 Speciation of major and selected trace elements in IGCC fly ash. <i>Fuel</i> , 2005 , 84, 1364-1371 Ge extraction from gasification fly ash. <i>Fuel</i> , 2005 , 84, 1384-1392 Application of zeolitised coal fly ashes to the depuration of liquid wastes. <i>Fuel</i> , 2005 , 84, 1440-1446 Phase-mineral and chemical composition of fractions separated from composite fly ashes at the	7.1 7.1 7.1	203547325
149 148 147 146	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351 Speciation of major and selected trace elements in IGCC fly ash. <i>Fuel</i> , 2005 , 84, 1364-1371 Ge extraction from gasification fly ash. <i>Fuel</i> , 2005 , 84, 1384-1392 Application of zeolitised coal fly ashes to the depuration of liquid wastes. <i>Fuel</i> , 2005 , 84, 1440-1446 Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station, Turkey. <i>International Journal of Coal Geology</i> , 2005 , 61, 65-85 Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and	7.1 7.1 7.1 5.5	20354732548

(2004-2005)

141	Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. <i>Atmospheric Environment</i> , 2005 , 39, 6109-6120	5.3	39
140	Metal Adsorption on Clays from Pyrite Contaminated Soil. <i>Journal of Environmental Engineering,</i> ASCE, 2005 , 131, 1052-1056	2	8
139	CHARACTERISATION OF AMBIENT AIR PM DURING AFRICAN OUTBREAKS OVER NORTHEASTERN IBERIAN PENINSULA AND THE CANARY ISLANDS. <i>Journal of Aerosol Science</i> , 2004 , 35, S1055-S1056	4.3	
138	MEASUREMENT OF PARTICULATE MATTER EMITTED DURING BULK HANDLING ACTIVITIES IN A HARBOUR AREA IN SPAIN. <i>Journal of Aerosol Science</i> , 2004 , 35, S1001-S1002	4.3	
137	PMx Data Processing in Ceramic Tile Manufacturing Emissions. <i>Key Engineering Materials</i> , 2004 , 264-268, 2453-2456	0.4	3
136	Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). <i>Science of the Total Environment</i> , 2004 , 334-335, 111-23	10.2	64
135	Levels of particulate matter in rural, urban and industrial sites in Spain. <i>Science of the Total Environment</i> , 2004 , 334-335, 359-76	10.2	145
134	Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. <i>Science of the Total Environment</i> , 2004 , 328, 95-113	10.2	186
133	Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. <i>Atmospheric Environment</i> , 2004 , 38, 435-447	5.3	154
132	A European aerosol phenomenology¶: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2561-2577	5.3	381
131	A European aerosol phenomenology 12: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2579-2595	5.3	744
130	Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. <i>Atmospheric Environment</i> , 2004 , 38, 4979-4992	5.3	60
129	Speciation and origin of PM10 and PM2.5 in selected European cities. <i>Atmospheric Environment</i> , 2004 , 38, 6547-6555	5.3	464
128	Characterisation of the glass fraction of a selection of European coal fly ashes. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 540-546	3.5	34
127	Determining suitability of a fly ash for silica extraction and zeolite synthesis. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 1009-1018	3.5	15
126	Characterization of Candiota (South Brazil) coal and combustion by-product. <i>International Journal of Coal Geology</i> , 2004 , 60, 57-72	5.5	99
125	Speciation and origin of PM10 and PM2.5 in Spain. <i>Journal of Aerosol Science</i> , 2004 , 35, 1151-1172	4.3	207
124	INDALO 2003 FIELD CAMPAIGN. <i>Journal of Aerosol Science</i> , 2004 , 35, S981-S982	4.3	

123	Contribution of Desert Dust Transport to Air Quality Degradation of Urban Environments Recent Model Developments 2004 , 279-287		2
122	PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. <i>Atmospheric Environment</i> , 2003 , 37, 2879-2891	5.3	63
121	A new method for the simultaneous determination of PAH and metals in samples of atmospheric particulate matter. <i>Atmospheric Environment</i> , 2003 , 37, 4171-4175	5.3	26
120	Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. <i>International Journal of Coal Geology</i> , 2003 , 55, 103-115	5.5	41
119	Events affecting levels and seasonal evolution of airborne particulate matter concentrations in the Western Mediterranean. <i>Environmental Science & Environmental & En</i>	10.3	76
118	Purification of metal electroplating waste waters using zeolites. Water Research, 2003, 37, 4855-62	12.5	373
117	Synthesis of zeolites using fly ash and their application in removing heavy metals from waters. <i>Science in China Series D: Earth Sciences</i> , 2003 , 46, 967-976		20
116	Anthropogenic and natural influence on the PM(10) and PM(2.5) aerosol in Madrid (Spain). Analysis of high concentration episodes. <i>Environmental Pollution</i> , 2003 , 125, 453-65	9.3	119
115	Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. <i>Atmospheric Environment</i> , 2002 , 36, 3101-3112	5.3	112
114	Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. <i>Atmospheric Environment</i> , 2002 , 36, 3113-3125	5.3	134
113	Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. <i>Atmospheric Environment</i> , 2002 , 36, 5861-5875	5.3	156
112	Pure zeolite synthesis from silica extracted from coal fly ashes. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 274-279	3.5	43
111	Modelling of the glass phase in fly ashes using network connectivity theory. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 240-245	3.5	9
110	Thermal analysis of fly ashes sourced from European non-blended coals. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 246-250	3.5	6
109	Utilisation of zeolitised coal fly ash as immobilising agent of a metallurgical waste. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 305-310	3.5	16
108	Zeolitic material synthesised from fly ash: use as cationic exchanger. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 299-304	3.5	15
107	Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 292-298	3.5	68
106	Zeolite synthesis from a high SiAl fly ash from East China. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 267-273	3.5	13

(2001-2002)

105	Characterisation of bottom ash from municipal solid waste incineration in Catalonia. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 576-583	3.5	48
104	Use of the axial dispersion model to describe the O3 and O3 /H2O2 advanced oxidation of alachlor in water. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 584-592	3.5	10
103	Synthesis of zeolites from coal fly ash: an overview. <i>International Journal of Coal Geology</i> , 2002 , 50, 413-	-45253	592
102	Mineralogy and Elemental Contents of the Sirnak Asphaltite, Southeast Turkey. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2002 , 24, 703-713		13
101	Sources and processes affecting levels and composition of atmospheric aerosol in the western Mediterranean. <i>Journal of Geophysical Research</i> , 2002 , 107, AAC 12-1		91
100	The fate of trace elements in a large coal-fired power plant. <i>Environmental Geology</i> , 2001 , 40, 409-416		72
99	Characterization of total suspended particles around a power station in an urban coastal area in eastern Spain. <i>Environmental Geology</i> , 2001 , 40, 891-896		21
98	Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. <i>International Journal of Coal Geology</i> , 2001 , 45, 247-265	5.5	48
97	Petrology, mineralogy and geochemistry of the Permian and Triassic coals in the Leping area, Jiangxi Province, southeast China. <i>International Journal of Coal Geology</i> , 2001 , 48, 23-45	5.5	64
96	. Tellus, Series B: Chemical and Physical Meteorology, 2001 , 53, 40-52	3.3	7
96 95	. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2001 , 53, 40-52 Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96		7
95	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96 Extraction of soluble major and trace elements from fly ash in open and closed leaching systems.	7.1	62
95	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96 Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. <i>Fuel</i> , 2001 , 80, 801-813 Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. <i>Fuel</i> , 2001 ,	7.1 7.1	107
95 94 93	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96 Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. <i>Fuel</i> , 2001 , 80, 801-813 Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. <i>Fuel</i> , 2001 , 80, 857-865 Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.	7.1 7.1 7.1	62 107 172
95 94 93 92	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96 Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. <i>Fuel</i> , 2001 , 80, 801-813 Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. <i>Fuel</i> , 2001 , 80, 857-865 Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. <i>Environmental Science & Design Company</i> , 2001 , 35, 3526-34 Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources.	7.1 7.1 7.1	62 107 172 157
95 94 93 92 91	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96 Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. <i>Fuel</i> , 2001 , 80, 801-813 Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. <i>Fuel</i> , 2001 , 80, 857-865 Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. <i>Environmental Science & Description of Sc</i>	7.1 7.1 7.1 10.3	62 107 172 157 195

87	Potential Environmental Applications of Pure Zeolitic Material Synthesized from Fly Ash. <i>Journal of Environmental Engineering, ASCE</i> , 2001 , 127, 994-1002	2	28
86	Wet-only sequential deposition in a rural area in north-eastern Spain. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2001 , 53, 40-52	3.3	6
85	PM10 AND PM2.5 IN A STREET CANYON IN NE SPAIN. Journal of Aerosol Science, 2001, 32, 675-676	4.3	
84	SOURCE APPORTIONMENT OF PM10 IN A RURAL SITE IN NORTHEAST SPAIN. <i>Journal of Aerosol Science</i> , 2001 , 32, 789-790	4.3	
83	TOTAL SUSPENDED PARTICLES AND PM10 IN AMBIENT AIR IN MADRID (SPAIN). <i>Journal of Aerosol Science</i> , 2001 , 32, 771-772	4.3	2
82	Contents of major and trace elements in feed coals from Turkish coal-fired power plants. <i>International Journal of Coal Geology</i> , 2000 , 44, 169-184	5.5	111
81	Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, south China. <i>International Journal of Coal Geology</i> , 2000 , 45, 21-37	5.5	63
80	Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain. Inferences from sulphur isotope geochemistry. <i>Atmospheric Environment</i> , 2000 , 34, 333-345	5.3	32
79	Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Do ll na area, Southwest Spain. <i>Atmospheric Environment</i> , 2000 , 34, 239-253	5.3	48
78	Extraction of Water-Soluble Impurities from Fly Ash. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2000 , 22, 733-749		14
77	Estudio y evaluacifi de la contaminacifi atmosffica por material particulado en Espa li : necesidades derivadas de la propuesta de la directiva del consejo relativa a partfulas PM10 y PM2.5 e implicaciones en la industria cerfica. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i>	1.9	3
76	, 2000 , 39, 135-148 Physicochemical Characterization of Spanish Fly Ashes. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 1999 , 21, 883-898		16
75	Characterisation of atmospheric particulates around a coal-fired power station. <i>International Journal of Coal Geology</i> , 1999 , 40, 175-188	5.5	19
74	Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. <i>International Journal of Coal Geology</i> , 1999 , 41, 311-332	5.5	38
73	Geological controls on the quality of coals from the West Shandong mining district, Eastern China. <i>International Journal of Coal Geology</i> , 1999 , 42, 63-88	5.5	41
73 72		5·5 9·3	41 2 0
	International Journal of Coal Geology, 1999 , 42, 63-88 Daily evolution of sulphate aerosols in a rural area, northeastern Spain lucidation of an		

69	Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalclar spill, south-west Spain. <i>Science of the Total Environment</i> , 1999 , 242, 41-55	10.2	74
68	Physico-chemical characterization of atmospheric aerosols in a rural area affected by the Aznalcollar toxic spill, south-west Spain during the soil reclamation activities. <i>Science of the Total Environment</i> , 1999 , 242, 89-104	10.2	17
67	Heavy metal adsorption by different minerals: application to the remediation of polluted soils. <i>Science of the Total Environment</i> , 1999 , 242, 179-188	10.2	149
66	Zinc contamination in the bottom and suspended sediments of the Guadalquivir estuary after the Aznalcollar spill (south-western Spain). Control of hydrodynamic processes. <i>Science of the Total Environment</i> , 1999 , 242, 211-220	10.2	23
65	Seasonal evolution of suspended particles around a large coal-fired power station: Chemical characterization. <i>Atmospheric Environment</i> , 1998 , 32, 719-731	5.3	85
64	Seasonal evolution of suspended particles around a large coal-fired power station. <i>Atmospheric Environment</i> , 1998 , 32, 1963-1978	5.3	104
63	A Fast Method for Recycling Fly Ash: 'Microwave-Assisted Zeolite Synthesis. <i>Environmental Science & Environmental Science & Technology</i> , 1997 , 31, 2527-2533	10.3	195
62	Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis. <i>FreseniuseJournal of Analytical Chemistry</i> , 1997 , 357, 934-940		5
61	Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. <i>International Journal of Coal Geology</i> , 1997 , 33, 255-271	5.5	178
60	Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. <i>International Journal of Coal Geology</i> , 1997 , 34, 89-109	5.5	60
59	Synthesis of Na-zeolites from fly ash. <i>Fuel</i> , 1997 , 76, 793-799	7.1	166
58	Use of coal fly ash for ceramics: a case study for a large Spanish power station. <i>Fuel</i> , 1997 , 76, 787-791	7.1	62
57	Mineral composition of atmospheric particulates around a large coal-fired power station. <i>Atmospheric Environment</i> , 1996 , 30, 3557-3572	5.3	107
56	Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. <i>International Journal of Coal Geology</i> , 1996 , 29, 67-91	5.5	70
55	Mobility of trace elements from coal and combustion wastes. <i>Fuel</i> , 1996 , 75, 821-838	7.1	156
54	Zeolites in Tertiary coal from the Byirhan mine, Beypazari, Turkey. <i>Mineralium Deposita</i> , 1996 , 31, 529-5	38 .8	12
53	Zeolites in Tertiary coal from the ?ayirhan mine, Beypazari, Turkey. <i>Mineralium Deposita</i> , 1996 , 31, 529-	5 3µ8 8	1
52	Determination of trace element affinities in coal by laser ablation microprobe-inductively coupled plasma mass spectrometry. <i>Geological Society Special Publication</i> , 1995 , 82, 147-155	1.7	5

51	Environmental monitoring using surface water, river sediments, and vegetation: A case study in the Famatina Range, La Rioja, NW Argentina. <i>Environment International</i> , 1995 , 21, 807-820	12.9	15
50	Synthesis of industrial minerals from fly ash. <i>Coal Science and Technology</i> , 1995 , 1979-1982		12
49	Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel, 1995, 74, 1226-1231	7.1	92
48	Trace elements in coal and their behaviour during combustion in a large power station. <i>Fuel</i> , 1995 , 74, 331-343	7.1	470
47	The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals. <i>Mineralogical Magazine</i> , 1994 , 58, 119-133	1.7	61
46	Fly ash content and distribution in lake sediments around a large power station: inferences from magnetic susceptibility analysis. <i>Environmental Geochemistry and Health</i> , 1994 , 16, 9-18	4.7	4
45	Mobility of heavy metals from coal fly ash. <i>Environmental Geology</i> , 1994 , 23, 264-270		84
44	Determination of pyritic sulphur and organic matter contents in Spanish subbituminous coals by X-ray power diffraction. <i>International Journal of Coal Geology</i> , 1993 , 22, 279-293	5.5	19
43	Trace elements in high-S subbituminous coals from the teruel Mining District, northeast Spain. <i>Applied Geochemistry</i> , 1992 , 7, 547-561	3.5	40
42	Comparison between analytical and mineralometric methods in regional scheelite exploration. <i>Journal of Geochemical Exploration</i> , 1992 , 43, 205-211	3.8	
41	Distribution of sulfur in coals of the Teruel mining district, Spain. <i>International Journal of Coal Geology</i> , 1991 , 18, 327-346	5.5	26
40	Environmental impact of mineral transformations undergone during coal combustion. <i>Environmental Geology and Water Sciences</i> , 1991 , 18, 11-15		32
39	Physico-Chemical And Mineralogical Characterization Op Mining Wastes Used In Construction. <i>Studies in Environmental Science</i> , 1991 , 48, 215-223		4
38	Determination of pyrrhotite (Fe1\(\text{NS} \)) occurring in aggregates by X ray fluorescence. <i>Cement and Concrete Research</i> , 1990 , 20, 394-397	10.3	8
37	Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. <i>International Journal of Coal Geology</i> , 1989 , 11, 171-189	5.5	73
36	Novel Products and Applications with Combustion Residues199-378		
35	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe		4
34	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain		4

33	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data	6
32	The DAURE field campaign: meteorological overview	16
31	Variability of levels of PM, black carbon and particle number concentration in selected European cities	2
30	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer	18
29	Trends of particulate matter (PM _{2.5}) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002\(\bar{\pi} 010 \))	3
28	Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain	3
27	On the spatial distribution and evolution of ultrafine aerosols in urban air	3
26	Presenting SAPUSS: solving aerosol problem by using synergistic strategies at Barcelona, Spain	7
25	Hourly elemental concentrations in PM _{2.5} aerosols sampled simultaneously at urban background and road site	7
24	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality	1
23	African dust outbreaks over the Mediterranean Basin during 2001\(\textit{D}\)011: PM ₁₀ concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology	7
22	Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system	1
21	Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona, Spain	1
20	The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements	4
19	Trends of road dust emissions contributions on ambient PM levels at rural, urban and industrial sites in Southern Spain	2
18	Indoor/outdoor relationships of quasi-ultrafine, accumulation and coarse mode particles in school environments in Barcelona: chemical composition and sources	4
17	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona, Spain	2
16	Frequency of new particle formation events in the urban Mediterranean climate	4

15	Modulation of Saharan dust export by the North African dipole		3
14	Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high altitude site in the Western Mediterranean Basin		2
13	African dust outbreaks over the western Mediterranean basin: 11 year characterization of atmospheric circulation patterns and dust source areas		1
12	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities		13
11	Mediterranean desert dust outbreaks and their vertical structure based on remote sensing data		3
10	Chemical characterization of submicron regional background aerosols in the Western Mediterranean using an Aerosol Chemical Speciation Monitor		4
9	A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London		2
8	Variability in regional background aerosols within the Mediterranean		6
7	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) [Part 2: Analysis of the biomass burning contribution and the modern carbon fraction		5
6	Joint analysis of continental and regional background environments in the Western Mediterranean: PM ₁ and PM ₁₀ concentrations and composition		2
5	Long-term real-time chemical characterization of submicron aerosols at Montsec (Southern Pyrenees, 1570 m a.s.l.)		1
4	Summer ammonia measurements in a densely populated Mediterranean city		1
3	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern~Pyrenees, 1570 m a.s.l.)		1
2	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and their Application to COVID-19 Outbreaks		6
1	Advanced instrumental approaches for chemical characterization of indoor particulate matter. <i>Applied Spectroscopy Reviews</i> ,1-41	4.5	1