Xavier Querol

List of Publications by Citations

Source: https://exaly.com/author-pdf/5530220/xavier-querol-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 104 41,737 734 h-index g-index citations papers 46,960 6.7 784 7.38 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
734	A European aerosol phenomenology ½ : chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2579-2595	5.3	744
733	Source apportionment of particulate matter in Europe: A review of methods and results. <i>Journal of Aerosol Science</i> , 2008 , 39, 827-849	4.3	674
73 ²	Synthesis of zeolites from coal fly ash: an overview. <i>International Journal of Coal Geology</i> , 2002 , 50, 413	-4523	592
73 ¹	A European aerosol phenomenology B: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. <i>Atmospheric Environment</i> , 2010 , 44, 1308-1320	5.3	563
730	How can airborne transmission of COVID-19 indoors be minimised?. <i>Environment International</i> , 2020 , 142, 105832	12.9	525
729	PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. <i>Atmospheric Environment</i> , 2001 , 35, 6407-6419	5.3	495
728	Trace elements in coal and their behaviour during combustion in a large power station. <i>Fuel</i> , 1995 , 74, 331-343	7.1	470
727	Speciation and origin of PM10 and PM2.5 in selected European cities. <i>Atmospheric Environment</i> , 2004 , 38, 6547-6555	5.3	464
726	Leaching behaviour of elements from coal combustion fly ash: An overview. <i>International Journal of Coal Geology</i> , 2012 , 94, 54-66	5.5	463
725	Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. <i>Science of the Total Environment</i> , 2020 , 726, 138540	10.2	425
724	Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. <i>Atmospheric Environment</i> , 2001 , 35, 2433-2447	5.3	425
723	Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. <i>Atmospheric Environment</i> , 2009 , 43, 2770-2780	5.3	404
722	Green spaces and cognitive development in primary schoolchildren. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7937-42	11.5	393
721	A European aerosol phenomenology l : physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2561-2577	5.3	381
720	Purification of metal electroplating waste waters using zeolites. Water Research, 2003, 37, 4855-62	12.5	373
719	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1649-1665	6.8	353
718	Spatial and chemical patterns of PM10 in road dust deposited in urban environment. <i>Atmospheric Environment</i> , 2009 , 43, 1650-1659	5.3	331

717	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. <i>Atmospheric Environment</i> , 2007 , 41, 7219-7231	5.3	330
716	African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. <i>Atmospheric Environment</i> , 2009 , 43, 4266-4277	5.3	318
715	Impact of maritime transport emissions on coastal air quality in Europe. <i>Atmospheric Environment</i> , 2014 , 90, 96-105	5.3	304
714	Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. <i>Chemosphere</i> , 2006 , 65, 261-70	8.4	294
713	Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. <i>PLoS Medicine</i> , 2015 , 12, e1001792	11.6	293
712	Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. <i>Journal of Hazardous Materials</i> , 2008 , 154, 175-83	12.8	287
711	African dust outbreaks over the Mediterranean Basin during 2001\(\bar{2}\)0011: PM ₁₀ concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmospheric Chemistry and Physics, 2013, 13, 1395-1410	6.8	280
710	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6207-6227	6.8	269
709	Coarse particles from Saharan dust and daily mortality. <i>Epidemiology</i> , 2008 , 19, 800-7	3.1	269
708	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999\(\mathbb{Q}\)005. Atmospheric Environment, 2008 , 42, 3964-3979	5.3	258
707	Sources and variability of inhalable road dust particles in three European cities. <i>Atmospheric Environment</i> , 2011 , 45, 6777-6787	5.3	234
706	Urban air quality: the challenge of traffic non-exhaust emissions. <i>Journal of Hazardous Materials</i> , 2014 , 275, 31-6	12.8	221
7°5	Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. <i>International Journal of Coal Geology</i> , 2008 , 75, 93-104	5.5	212
704	Speciation and origin of PM10 and PM2.5 in Spain. <i>Journal of Aerosol Science</i> , 2004 , 35, 1151-1172	4.3	207
703	Partitioning of major and trace components in PM10PM2.5PM1 at an urban site in Southern Europe. <i>Atmospheric Environment</i> , 2008 , 42, 1677-1691	5.3	205
702	Physico-chemical characteristics of European pulverized coal combustion fly ashes. <i>Fuel</i> , 2005 , 84, 1351	-1/3/63	203
701	Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. <i>International Journal of Coal Geology</i> , 2010 , 82, 51-67	5.5	200
700	A Fast Method for Recycling Fly Ash: Microwave-Assisted Zeolite Synthesis. <i>Environmental Science & Environmental Science</i>	10.3	195

699	Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. <i>Atmospheric Environment</i> , 2001 , 35, 845-858	5.3	195
698	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3289-3309	6.8	191
697	Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. <i>Environment International</i> , 2014 , 69, 200-12	12.9	190
696	Source apportionment of PM(10) and PM(2.5) at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 260-9	5.1	190
695	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 111-128	6.8	188
694	Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. <i>Science of the Total Environment</i> , 2004 , 328, 95-113	10.2	186
693	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6663-6685	6.8	183
692	Wet and dry African dust episodes over eastern Spain. <i>Journal of Geophysical Research</i> , 2005 , 110,		181
691	Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. <i>International Journal of Coal Geology</i> , 1997 , 33, 255-271	5.5	178
690	Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. <i>Aerosol Science and Technology</i> , 2010 , 44, 487-	499	176
689	Chemical tracers of particulate emissions from commercial shipping. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 7472-7	10.3	176
688	Variability in regional background aerosols within the Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4575-4591	6.8	173
687	Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. <i>Fuel</i> , 2001 , 80, 857-865	7.1	172
686	Synthesis of Na-zeolites from fly ash. <i>Fuel</i> , 1997 , 76, 793-799	7.1	166
685	A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. <i>Science of the Total Environment</i> , 2010 , 408, 3070-84	10.2	164
684	Characterisation of TSP and PM2.5 at Iza ll and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002). <i>Atmospheric Environment</i> , 2005 , 39, 4715-4728	5.3	161
683	Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. <i>Atmospheric Environment</i> , 2009 , 43, 4407-4415	5.3	160
682	Coal fly ash-slag-based geopolymers: microstructure and metal leaching. <i>Journal of Hazardous Materials</i> , 2009 , 166, 561-6	12.8	158

(2002-2010)

681	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) [Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5315-5341	6.8	157	
680	A methodology for the quantification of the net African dust load in air quality monitoring networks. <i>Atmospheric Environment</i> , 2007 , 41, 5516-5524	5.3	157	
679	Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. <i>Environmental Science & Environmental Science & Envir</i>	10.3	157	
678	Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. <i>Atmospheric Environment</i> , 2002 , 36, 5861-5875	5.3	156	
677	Mobility of trace elements from coal and combustion wastes. <i>Fuel</i> , 1996 , 75, 821-838	7.1	156	
676	Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project. <i>International Journal of Public Health</i> , 2015 , 60, 619-27	4	155	
675	Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project. <i>Environmental Health Perspectives</i> , 2013 , 121, 932-8	8.4	154	
674	Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. <i>Atmospheric Environment</i> , 2004 , 38, 435-447	5.3	154	
673	Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. <i>Environmental Health Perspectives</i> , 2013 , 121, 1026-33	8.4	152	
672	Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. <i>Chemosphere</i> , 2006 , 62, 171-80	8.4	151	
671	Health effects from Sahara dust episodes in Europe: literature review and research gaps. <i>Environment International</i> , 2012 , 47, 107-14	12.9	150	
670	Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). <i>Atmospheric Research</i> , 2011 , 102, 191-205	5.4	149	
669	Heavy metal adsorption by different minerals: application to the remediation of polluted soils. <i>Science of the Total Environment</i> , 1999 , 242, 179-188	10.2	149	
668	Levels of particulate matter in rural, urban and industrial sites in Spain. <i>Science of the Total Environment</i> , 2004 , 334-335, 359-76	10.2	145	
667	The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. <i>Environmental Health Perspectives</i> , 2011 , 119, 1781-7	8.4	143	
666	Variability of levels and composition of PM₁₀ and PM_{2.5} in the Barcelona metro system. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5055-5076	6.8	138	
665	Review of the efficacy of low emission zones to improve urban air quality in European cities. <i>Atmospheric Environment</i> , 2015 , 111, 161-169	5.3	136	
664	Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. <i>Atmospheric Environment</i> , 2002 , 36, 3113-3125	5.3	134	

663	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12067-12	0848	133
662	Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. <i>Atmospheric Environment</i> , 2007 , 41, 913-922	5.3	132
661	Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. <i>Science of the Total Environment</i> , 2012 , 430, 34-47	10.2	128
660	Variations in vanadium, nickel and lanthanoid element concentrations in urban air. <i>Science of the Total Environment</i> , 2010 , 408, 4569-79	10.2	127
659	Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. <i>Journal of Hazardous Materials</i> , 2007 , 142, 191-8	12.8	125
658	Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM from Southern European cities. <i>Science of the Total Environment</i> , 2017 , 595, 494-504	10.2	122
657	Sources of indoor and outdoor PM2.5 concentrations in primary schools. <i>Science of the Total Environment</i> , 2014 , 490, 757-65	10.2	119
656	Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. <i>Atmospheric Environment</i> , 2008 , 42, 3820-3832	5.3	119
655	Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products. <i>Chemosphere</i> , 2006 , 65, 2009-17	8.4	119
654	Anthropogenic and natural influence on the PM(10) and PM(2.5) aerosol in Madrid (Spain). Analysis of high concentration episodes. <i>Environmental Pollution</i> , 2003 , 125, 453-65	9.3	119
653	Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5929-5945	6.8	118
652	Hourly elemental concentrations in PM_{2.5} aerosols sampled simultaneously at urban background and road site during SAPUSS diurnal variations and PMF receptor modelling. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4375-4392	6.8	118
651	Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000\(\mathbb{Z}\)000) MODIS data. <i>Journal of Geophysical Research</i> , 2008 , 113,		118
650	A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2217	7-2232	118
649	Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. <i>International Journal of Coal Geology</i> , 2012 , 94, 314-325	5.5	115
648	The association between greenness and traffic-related air pollution at schools. <i>Science of the Total Environment</i> , 2015 , 523, 59-63	10.2	114
647	Biomass burning contributions to urban aerosols in a coastal Mediterranean city. <i>Science of the Total Environment</i> , 2012 , 427-428, 175-90	10.2	113
646	Size fractionate particulate matter, vehicle traffic, and case-specific daily mortality in Barcelona, Spain. <i>Environmental Science & Environmental Sc</i>	10.3	112

(2016-2002)

645	Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. <i>Atmospheric Environment</i> , 2002 , 36, 3101-3112	5.3	112	
644	Contents of major and trace elements in feed coals from Turkish coal-fired power plants. International Journal of Coal Geology, 2000, 44, 169-184	5.5	111	
643	Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean. <i>Science of the Total Environment</i> , 2008 , 407, 527-40	10.2	109	
642	Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. <i>Atmospheric Environment</i> , 2006 , 40, 6791-6803	5.3	109	
641	Origin of the exceedances of the European daily PM limit value in regional background areas of Spain. <i>Atmospheric Environment</i> , 2007 , 41, 730-744	5.3	108	
640	Recovery of gallium and vanadium from gasification fly ash. <i>Journal of Hazardous Materials</i> , 2007 , 139, 413-23	12.8	107	
639	Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. <i>Fuel</i> , 2001 , 80, 801-813	7.1	107	
638	Mineral composition of atmospheric particulates around a large coal-fired power station. <i>Atmospheric Environment</i> , 1996 , 30, 3557-3572	5.3	107	
637	Saharan dust, particulate matter and cause-specific mortality: a case-crossover study in Barcelona (Spain). <i>Environment International</i> , 2012 , 48, 150-5	12.9	106	
636	PhaseThineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. <i>International Journal of Coal Geology</i> , 2005 , 61, 35-63	5.5	106	
635	Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. <i>Environmental Research</i> , 2015 , 142, 495-510	7.9	105	
634	Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. <i>Atmospheric Environment</i> , 2014 , 92, 461-468	5.3	105	
633	Assessment of personal exposure to particulate air pollution during commuting in European citiesrecommendations and policy implications. <i>Science of the Total Environment</i> , 2014 , 490, 785-97	10.2	104	
632	Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. <i>International Journal of Coal Geology</i> , 2011 , 85, 2-22	5.5	104	
631	Seasonal evolution of suspended particles around a large coal-fired power station. <i>Atmospheric Environment</i> , 1998 , 32, 1963-1978	5.3	104	
630	Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. <i>Atmospheric Environment</i> , 2007 , 41, 5972-5983	5.3	104	
629	An introductory TEM study of Fe-nanominerals within coal fly ash. <i>Science of the Total Environment</i> , 2009 , 407, 4972-4	10.2	103	
628	Desert Dust Outbreaks in Southern Europe: Contribution to Daily PMIConcentrations and Short-Term Associations with Mortality and Hospital Admissions. <i>Environmental Health Perspectives</i> , 2016 , 124, 413-9	8.4	103	

627	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. <i>Atmospheric Environment</i> , 2009 , 43, 3989-3997	5.3	102
626	Trace element variation in size-fractionated African desert dusts. <i>Journal of Arid Environments</i> , 2008 , 72, 1034-1045	2.5	101
625	African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6759-6775	6.8	100
624	Exposure to airborne particulate matter in the subway system. <i>Science of the Total Environment</i> , 2015 , 511, 711-22	10.2	99
623	Factors controlling air quality in different European subway systems. <i>Environmental Research</i> , 2016 , 146, 35-46	7.9	99
622	Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. <i>International Journal of Coal Geology</i> , 2006 , 66, 119-136	5.5	99
621	Characterization of Candiota (South Brazil) coal and combustion by-product. <i>International Journal of Coal Geology</i> , 2004 , 60, 57-72	5.5	99
620	Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. <i>Fuel</i> , 2009 , 88, 1185-1193	7.1	96
619	Brazilian coal mining residues and sulphide oxidation by Fenton's reaction: an accelerated weathering procedure to evaluate possible environmental impact. <i>Journal of Hazardous Materials</i> , 2011 , 186, 516-25	12.8	96
618	PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. <i>Atmospheric Research</i> , 2015 , 155, 102-117	5.4	95
617	Children's well-being at schools: Impact of climatic conditions and air pollution. <i>Environment International</i> , 2016 , 94, 196-210	12.9	95
616	2001-2012 trends on air quality in Spain. Science of the Total Environment, 2014, 490, 957-69	10.2	95
615	Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system. <i>Fuel</i> , 2012 , 92, 145-157	7.1	95
614	Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. <i>Chemosphere</i> , 2006 , 65, 2411-8	8.4	95
613	Leaching of potential hazardous elements of coal cleaning rejects. <i>Environmental Monitoring and Assessment</i> , 2011 , 175, 109-26	3.1	93
612	Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. <i>Atmospheric Environment</i> , 2006 , 40, 2180-2193	5.3	92
611	Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel, 1995, 74, 1226-1231	7.1	92
610	Traffic pollution exposure is associated with altered brain connectivity in school children. NeuroImage, 2016, 129, 175-184	7.9	91

(2014-2012)

609	background site in the Western Mediterranean over the last nine years (2002\(\mathbb{\textit{2000}\). Atmospheric Chemistry and Physics, 2012, 12, 8341-8357	6.8	91
608	Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. <i>Journal of Geophysical Research</i> , 2006 , 111,		91
607	Sources and processes affecting levels and composition of atmospheric aerosol in the western Mediterranean. <i>Journal of Geophysical Research</i> , 2002 , 107, AAC 12-1		91
606	Variations of urban aerosols in the western Mediterranean. <i>Atmospheric Environment</i> , 2008 , 42, 9052-9	0 6 23	90
605	Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 529-35	8.4	90
604	Urban NH3 levels and sources in a Mediterranean environment. <i>Atmospheric Environment</i> , 2012 , 57, 153	3-9.64	88
603	Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. <i>Fuel</i> , 2012 , 95, 446-456	7.1	88
602	Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain). <i>Science of the Total Environment</i> , 2011 , 412-413, 386-9	10.2	86
601	Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. <i>Atmospheric Environment</i> , 2008 , 42, 1941-1957	5.3	86
600	Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. <i>Atmospheric Environment</i> , 2013 , 68, 33-44	5.3	85
599	Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 21246-9	11.5	85
598	Seasonal evolution of suspended particles around a large coal-fired power station: Chemical characterization. <i>Atmospheric Environment</i> , 1998 , 32, 719-731	5.3	85
597	Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. <i>Chemosphere</i> , 2007 , 66, 1485-93	8.4	85
596	Monitoring the impact of desert dust outbreaks for air quality for health studies. <i>Environment International</i> , 2019 , 130, 104867	12.9	84
595	Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		84
594	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2917-2931	6.8	84
593	Mobility of heavy metals from coal fly ash. <i>Environmental Geology</i> , 1994 , 23, 264-270		84
592	Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3533-3544	6.8	83

591	A comprehensive assessment of PM emissions from paved roads: real-world Emission Factors and intense street cleaning trials. <i>Science of the Total Environment</i> , 2010 , 408, 4309-18	10.2	83
590	Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. <i>Atmospheric Environment</i> , 2015 , 106, 129-138	5.3	82
589	Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution?. <i>Science of the Total Environment</i> , 2012 , 427-428, 191-202	10.2	81
588	Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. <i>Atmospheric Research</i> , 2009 , 94, 285-299	5.4	81
587	Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: results from the MED-PARTICLES project. <i>Environment International</i> , 2015 , 75, 151-8	12.9	8o
586	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6185-6206	6.8	80
585	Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. <i>Environmental Science & Environmental Science & Environm</i>	10.3	80
584	Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 2017 , 142, 2700-2706	10.3	78
583	Solid Particulate Matter in the Atmosphere. <i>Elements</i> , 2010 , 6, 215-222	3.8	78
582	Modulation of Saharan dust export by the North African dipole. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7471-7486	6.8	77
581	A new look at inhalable metalliferous airborne particles on rail subway platforms. <i>Science of the Total Environment</i> , 2015 , 505, 367-75	10.2	77
580	Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. <i>Journal of Hazardous Materials</i> , 2010 , 181, 82-90	12.8	77
579	Lanthanoid geochemistry of urban atmospheric particulate matter. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 6502-7	10.3	77
578	The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12135-12154	6.8	76
577	Geochemistry of regional background aerosols in the Western Mediterranean. <i>Atmospheric Research</i> , 2009 , 94, 422-435	5.4	76
576	Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. <i>Atmospheric Environment</i> , 2010 , 44, 1587-1596	5.3	76
575	Events affecting levels and seasonal evolution of airborne particulate matter concentrations in the Western Mediterranean. <i>Environmental Science & Environmental Science & En</i>	10.3	76
574	Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. <i>Environmental Pollution</i> , 2016 , 208, 125-136	9.3	74

(2008-2013)

573	Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. <i>International Journal of Coal Geology</i> , 2013 , 116-117, 75-92	5.5	74
572	Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. <i>Fuel</i> , 2012 , 95, 272-281	7.1	74
571	Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalclar spill, south-west Spain. <i>Science of the Total Environment</i> , 1999 , 242, 41-55	10.2	74
570	Variability of aerosol optical properties in the Western Mediterranean Basin. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8189-8203	6.8	73
569	Ge extraction from gasification fly ash. Fuel, 2005, 84, 1384-1392	7.1	73
568	Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. <i>International Journal of Coal Geology</i> , 1989 , 11, 171-189	5.5	73
567	A paradigm shift to combat indoor respiratory infection. <i>Science</i> , 2021 , 372, 689-691	33.3	73
566	Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9415-9430	6.8	72
565	The fate of trace elements in a large coal-fired power plant. <i>Environmental Geology</i> , 2001 , 40, 409-416		72
564	Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. <i>International Journal of Coal Geology</i> , 2009 , 78, 16-26	5.5	71
563	Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. <i>Environment International</i> , 2017 , 105, 12-19	12.9	70
562	Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. <i>Atmospheric Environment</i> , 2011 , 45, 641-649	5.3	70
561	Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5 0 concentrations in a coastal city. <i>Atmospheric Environment</i> , 2008 , 42, 6523-6534	5.3	70
560	Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. <i>International Journal of Coal Geology</i> , 1996 , 29, 67-91	5.5	70
559	Traffic induced particle resuspension in Paris: Emission factors and source contributions. <i>Atmospheric Environment</i> , 2016 , 129, 114-124	5.3	69
558	Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. <i>Atmospheric Environment</i> , 2007 , 41, 315-326	5.3	69
557	Identification and chemical characterization of industrial particulate matter sources in southwest Spain. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 993-1006	2.4	69
556	Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. <i>Atmospheric Environment</i> , 2008 , 42, 7851-7861	5.3	68

555	Influence of Sampling Artefacts on Measured PM, OC, and EC Levels in Carbonaceous Aerosols in an Urban Area. <i>Aerosol Science and Technology</i> , 2006 , 40, 107-117	3.4	68
554	Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 292-298	3.5	68
553	Intense winter atmospheric pollution episodes affecting the Western Mediterranean. <i>Science of the Total Environment</i> , 2010 , 408, 1951-9	10.2	67
552	Sea salt concentrations across the European continent. <i>Atmospheric Environment</i> , 2010 , 44, 2434-2442	5.3	67
551	Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. <i>Science of the Total Environment</i> , 2016 , 571, 237-50	10.2	67
550	A multidisciplinary approach to characterise exposure risk and toxicological effects of PMI and PMI amples in urban environments. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 78, 327-35	7	66
549	A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. <i>Science of the Total Environment</i> , 2008 , 390, 495-506	10.2	65
548	Nanoparticles from construction wastes: A problem to health and the environment. <i>Journal of Cleaner Production</i> , 2019 , 219, 236-243	10.3	64
547	Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8609-8642	6.8	64
546	Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area, Sichuan Province, China. <i>International Journal of Coal Geology</i> , 2012 , 94, 271-282	5.5	64
545	On the spatial distribution and evolution of ultrafine particles in Barcelona. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 741-759	6.8	64
544	Variation of the mixing state of Saharan dust particles with atmospheric transport. <i>Atmospheric Environment</i> , 2010 , 44, 3135-3146	5.3	64
543	Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). <i>Science of the Total Environment</i> , 2004 , 334-335, 111-23	10.2	64
542	Petrology, mineralogy and geochemistry of the Permian and Triassic coals in the Leping area, Jiangxi Province, southeast China. <i>International Journal of Coal Geology</i> , 2001 , 48, 23-45	5.5	64
541	The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. <i>Journal of Hazardous Materials</i> , 2010 , 176, 623-8	12.8	63
540	PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. <i>Atmospheric Environment</i> , 2003 , 37, 2879-2891	5.3	63
539	Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, south China. <i>International Journal of Coal Geology</i> , 2000 , 45, 21-37	5.5	63
538	Use of coal fly ash for ceramics: a case study for a large Spanish power station. <i>Fuel</i> , 1997 , 76, 787-791	7.1	62

537	Ion flotation of germanium from fly ash aqueous leachates. <i>Chemical Engineering Journal</i> , 2006 , 118, 69-75	14.7	62
536	Determination of element affinities by density fractionation of bulk coal samples. <i>Fuel</i> , 2001 , 80, 83-96	7.1	62
535	Chemical profiling of PM from urban road dust. Science of the Total Environment, 2018, 634, 41-51	10.2	61
534	Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project. <i>Occupational and Environmental Medicine</i> , 2015 , 72, 323-9	2.1	61
533	High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. <i>International Journal of Coal Geology</i> , 2012 , 99, 1-15	5.5	61
532	Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. <i>Atmospheric Environment</i> , 2013 , 72, 81-88	5.3	61
531	The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals. <i>Mineralogical Magazine</i> , 1994 , 58, 119-133	1.7	61
530	Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. <i>Atmospheric Environment</i> , 2012 , 59, 426-436	5.3	60
529	Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. <i>Fuel Processing Technology</i> , 2011 , 92, 1764-1775	7.2	60
528	Effect of fireworks events on urban background trace metal aerosol concentrations: is the cocktail worth the show?. <i>Journal of Hazardous Materials</i> , 2010 , 183, 945-9	12.8	60
527	Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. <i>International Journal of Coal Geology</i> , 1997 , 34, 89-109	5.5	60
526	Arsenic speciation study of PM2.5 in an urban area near a copper smelter. <i>Atmospheric Environment</i> , 2008 , 42, 6487-6495	5.3	60
525	Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. <i>Atmospheric Environment</i> , 2007 , 41, 1-17	5.3	60
524	Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. <i>Atmospheric Environment</i> , 2004 , 38, 4979-4992	5.3	60
523	A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. <i>Science of the Total Environment</i> , 2015 , 512-513, 371-380	10.2	59
522	Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. <i>Atmospheric Research</i> , 2015 , 153, 134-144	5.4	58
521	Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 1296-307	2.4	58
520	Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10693-10707	6.8	58

519	Neurodevelopmental Deceleration by Urban Fine Particles from Different Emission Sources: A Longitudinal Observational Study. <i>Environmental Health Perspectives</i> , 2016 , 124, 1630-1636	8.4	58
518	Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. <i>Science of the Total Environment</i> , 2020 , 701, 134474	10.2	58
517	Ultrafine particles and PM in the air of cities around the world: Are they representative of each other?. <i>Environment International</i> , 2019 , 129, 118-135	12.9	57
516	Source apportionment of ambient PM2.5 at five spanish centres of the european community respiratory health survey (ECRHS II). <i>Atmospheric Environment</i> , 2007 , 41, 1395-1406	5.3	57
515	Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in Barcelona. <i>Indoor Air</i> , 2016 , 26, 391-402	5.4	56
514	New Insights from Zinc and Copper Isotopic Compositions into the Sources of Atmospheric Particulate Matter from Two Major European Cities. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	56
513	African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. <i>Atmospheric Research</i> , 2013 , 127, 117-129	5.4	56
512	Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. <i>Atmospheric Environment</i> , 2013 , 71, 15-25	5.3	56
511	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2409-2419	4	55
510	Determination of drugs of abuse in airborne particles by pressurized liquid extraction and liquid chromatography-electrospray-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 4382-8	7.8	55
509	Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. <i>Science of the Total Environment</i> , 2010 , 408, 5117-22	10.2	55
508	Characterising exposure to PM aerosols for an epidemiological study. <i>Atmospheric Environment</i> , 2008 , 42, 1552-1568	5.3	55
507	Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain). <i>Atmospheric Environment</i> , 2005 , 39, 5343-5361	5.3	55
506	Natural sources of atmospheric aerosols influencing air quality across Europe. <i>Science of the Total Environment</i> , 2014 , 472, 825-33	10.2	54
505	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2935-2951	6.8	54
504	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. <i>Atmospheric Environment</i> , 2015 , 123, 240-250	5.3	54
503	Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain. <i>Environmental Research</i> , 2007 , 103, 305-16	7.9	54
502	Speciation of major and selected trace elements in IGCC fly ash. <i>Fuel</i> , 2005 , 84, 1364-1371	7.1	54

501	Assessment of airborne particulate levels in Spain in relation to the new EU-directive. <i>Atmospheric Environment</i> , 2001 , 35, 43-53	5.3	54
500	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. <i>Environment International</i> , 2020 , 135, 105345	12.9	54
499	Spatio-temporal variability of concentrations and speciation of particulate matter across Spain in the CALIOPE modeling system. <i>Atmospheric Environment</i> , 2012 , 46, 376-396	5.3	53
498	Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: primary and aged contributions. <i>Science of the Total Environment</i> , 2013 , 463-464, 497-507	10.2	53
497	Comparison between laboratory and field leachability of MSWI bottom ash as a road material. <i>Science of the Total Environment</i> , 2008 , 389, 10-9	10.2	53
496	Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 2008, 87, 1958-1966	57.1	53
495	Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in central China. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 1049-59		53
494	Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 9234-41	5.1	52
493	Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4459-4472	6.8	52
492	Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. <i>Science of the Total Environment</i> , 2013 , 463-464, 875-83	10.2	52
491	Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. <i>Atmospheric Research</i> , 2011 , 99, 518-527	5.4	52
490	Atmospheric particulate matter and air quality in the Mediterranean: a review. <i>Environmental Chemistry Letters</i> , 2007 , 5, 1-7	13.3	52
489	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. <i>Environment International</i> , 2021 , 147, 106326	12.9	52
488	Chemical characterization of humic-like substances (HULIS) in PM in Lanzhou, China. <i>Science of the Total Environment</i> , 2016 , 573, 1481-1490	10.2	51
487	Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. <i>Atmospheric Environment</i> , 2014 , 89, 268-281	5.3	51
486	Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. <i>Atmospheric Environment</i> , 2015 , 123, 220-228	5.3	51
485	Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. <i>Construction and Building Materials</i> , 2015 , 95, 910-921	6.7	50
484	Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. <i>Science of the Total Environment</i> , 2014 , 494-495, 283-9	10.2	50

483	Organic compounds in aerosols from selected European sites Biogenic versus anthropogenic sources. <i>Atmospheric Environment</i> , 2012 , 59, 243-255	5.3	50
482	Traffic-related Air Pollution and Attention in Primary School Children: Short-term Association. <i>Epidemiology</i> , 2017 , 28, 181-189	3.1	50
481	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6379-6391	6.8	50
480	Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. <i>Atmospheric Environment</i> , 2012 , 61, 507-517	5.3	50
479	Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5173-5187	6.8	50
478	Nanoparticulate mineral matter from basalt dust wastes. <i>Chemosphere</i> , 2016 , 144, 2013-7	8.4	49
477	AIRUSE-LIFE +: estimation of natural source contributions to urban ambient air PM₁₀ and PM_{2. 5} concentrations in southern Europe Implications to compliance with limit values. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3673-3685	6.8	49
476	X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes. <i>Fuel</i> , 2010 , 89, 2971-2976	7.1	49
475	An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 15133-48	5.1	48
474	Emission factors from road dust resuspension in a Mediterranean freeway. <i>Atmospheric Environment</i> , 2012 , 61, 580-587	5.3	48
473	Characterisation of bottom ash from municipal solid waste incineration in Catalonia. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 576-583	3.5	48
472	Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station, Turkey. <i>International Journal of Coal Geology</i> , 2005 , 61, 65-85	5.5	48
471	Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. <i>International Journal of Coal Geology</i> , 2001 , 45, 247-265	5.5	48
470	Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Do ll ana area, Southwest Spain. <i>Atmospheric Environment</i> , 2000 , 34, 239-253	5.3	48
469	Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. Journal of Aerosol Science, 2015 , 90, 103-113	4.3	47
468	Outdoor and indoor UFP in primary schools across Barcelona. <i>Science of the Total Environment</i> , 2014 , 493, 943-53	10.2	47
467	Evaluating urban PM10 pollution benefit induced by street cleaning activities. <i>Atmospheric Environment</i> , 2009 , 43, 4472-4480	5.3	47
466	Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 11526-42	5.1	46

(2002-2014)

465	Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. <i>Journal of Hazardous Materials</i> , 2014 , 265, 242-52	12.8	46	
464	Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 160-169	6.8	46	
463	Short-term variability of mineral dust, metals and carbon emission from road dust resuspension. <i>Atmospheric Environment</i> , 2013 , 74, 134-140	5.3	46	
462	Road dust contribution to PM levels Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. <i>Atmospheric Environment</i> , 2011 , 45, 2193-2201	5.3	46	
461	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9615-9630	6.8	46	
460	Natural and Anthropogenic Contributions to PM10 and PM2.5 in an Urban Area in the Western Mediterranean Coast. <i>Water, Air, and Soil Pollution</i> , 2008 , 192, 227-238	2.6	46	
459	Chemical characterisation of PM episodes in NE Spain. <i>Chemosphere</i> , 2006 , 62, 947-56	8.4	46	
458	Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. <i>Atmospheric Environment</i> , 2015 , 120, 15-27	5.3	45	
457	A review of methods for long term in situ characterization of aerosol dust. <i>Aeolian Research</i> , 2012 , 6, 55-74	3.9	45	
456	Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10353-10371	6.8	45	
455	Characterization and origin of EC and OC particulate matter near the Do ll na National Park (SW Spain). <i>Environmental Research</i> , 2009 , 109, 671-81	7.9	45	
454	Summer ammonia measurements in a densely populated Mediterranean city. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7557-7575	6.8	45	
453	The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. <i>International Journal of Coal Geology</i> , 2017 , 173, 110-128	5.5	44	
452	Environmental and health benefits from designating the Marmara Sea and the Turkish Straits as an emission control area (ECA). <i>Environmental Science & Echnology</i> , 2015 , 49, 3304-13	10.3	44	
45 ¹	Oxidative potential of subway PM2.5. Atmospheric Environment, 2017, 148, 230-238	5.3	44	
450	Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. <i>Atmospheric Environment</i> , 2012 , 61, 482-489	5.3	44	
449	Bulk deposition in a rural area located around a large coal-fired power station, northeast Spain. <i>Environmental Pollution</i> , 1999 , 106, 359-67	9.3	44	
448	Pure zeolite synthesis from silica extracted from coal fly ashes. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 274-279	3.5	43	

447	Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. <i>International Journal of Coal Geology</i> , 2019 , 203, 52-59	5.5	42
446	Geochemistry of PM₁₀ over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6107-6129	6.8	42
445	First Results of the Carbonaceous Aerosol in Rome and Environs (CARE) Experiment: Beyond Current Standards for PM10. <i>Atmosphere</i> , 2017 , 8, 249	2.7	42
444	Geochemical characterization of Cu-smelter emission plumes with impact in an urban area of SW Spain. <i>Atmospheric Research</i> , 2010 , 96, 590-601	5.4	42
443	Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. <i>Atmospheric Environment</i> , 2012 , 62, 352-358	5.3	41
442	Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 854-62		41
441	Trace element affinities in two high-Ge coals from China. Fuel, 2011, 90, 240-247	7.1	41
440	Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. <i>International Journal of Coal Geology</i> , 2007 , 71, 263-275	5.5	41
439	Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. <i>International Journal of Coal Geology</i> , 2003 , 55, 103-115	5.5	41
438	Geological controls on the quality of coals from the West Shandong mining district, Eastern China. <i>International Journal of Coal Geology</i> , 1999 , 42, 63-88	5.5	41
437	Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010. <i>Atmospheric Environment</i> , 2015 , 117, 234-241	5.3	40
436	The risks of acute exposure to black carbon in Southern Europe: results from the MED-PARTICLES project. <i>Occupational and Environmental Medicine</i> , 2015 , 72, 123-9	2.1	40
435	Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12567-12586	6.8	40
434	Trace elements in high-S subbituminous coals from the teruel Mining District, northeast Spain. <i>Applied Geochemistry</i> , 1992 , 7, 547-561	3.5	40
433	Effectiveness of commercial face masks to reduce personal PM exposure. <i>Science of the Total Environment</i> , 2019 , 650, 1582-1590	10.2	40
432	Testing the performance of sensors for ozone pollution monitoring in a citizen science approach. <i>Science of the Total Environment</i> , 2019 , 651, 1166-1179	10.2	40
431	Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods. <i>Journal of Hazardous Materials</i> , 2009 , 167, 582-8	12.8	39
430	Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. <i>Atmospheric Environment</i> , 2007 , 41, 6366-6378	5.3	39

(2012-2005)

429	Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. <i>Atmospheric Environment</i> , 2005 , 39, 6109-6120	5.3	39	
428	Caliope: an operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands Ifirst annual evaluation and ongoing developments. <i>Advances in Science and Research</i> , 2008 , 2, 89-98		39	
427	Powdered Ca-activated zeolite for phosphate removal from treated waste-water. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1962-1971	3.5	39	
426	Coal characteristics, elemental composition and modes of occurrence of some elements in the saalan coal (Balkesir, NW Turkey). <i>International Journal of Coal Geology</i> , 2017 , 172, 43-59	5.5	38	
425	Effects of road dust suppressants on PM levels in a Mediterranean urban area. <i>Environmental Science & Environmental Science &</i>	10.3	38	
424	New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. <i>International Journal of Coal Geology</i> , 2014 , 125, 10-21	5.5	38	
423	Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes. <i>Fuel</i> , 2013 , 105, 314-317	7.1	38	
422	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. <i>Atmospheric Environment</i> , 2011 , 45, 5282-5	2 593	38	
421	Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal of Environmental Management, 2009 , 90, 2558-67	7.9	38	
420	PM10 speciation and determination of air quality target levels. A case study in a highly industrialized area of Spain. <i>Science of the Total Environment</i> , 2007 , 372, 382-96	10.2	38	
419	Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. <i>International Journal of Coal Geology</i> , 1999 , 41, 311-332	5.5	38	
418	Geochemical data as indicators of palaeosalinity in coastal organic-rich sediments. <i>Chemical Geology</i> , 1999 , 157, 235-254	4.2	38	
417	Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. <i>Environment International</i> , 2018 , 111, 144-151	12.9	37	
416	A review on the applications of coal combustion products in China. <i>International Geology Review</i> , 2018 , 60, 671-716	2.3	37	
415	Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. <i>Science of the Total Environment</i> , 2018 , 616-617, 720-729	10.2	37	
414	Ambient air SO2 patterns in 6 European cities. <i>Atmospheric Environment</i> , 2013 , 79, 236-247	5.3	37	
413	Urban NH3 levels and sources in six major Spanish cities. <i>Chemosphere</i> , 2015 , 119, 769-777	8.4	37	
412	The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant. <i>Fuel</i> , 2012 , 102, 773-788	7.1	37	

411	Impact of fugitive emissions in ambient PM levels and composition: a case study in Southeast Spain. <i>Science of the Total Environment</i> , 2010 , 408, 4999-5009	10.2	37
410	Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North Atlantic Ocean. <i>Atmospheric Environment</i> , 2007 , 41, 9468-9480	5.3	37
409	Effect of public transport strikes on air pollution levels in Barcelona (Spain). <i>Science of the Total Environment</i> , 2018 , 610-611, 1076-1082	10.2	36
408	Personal, indoor and outdoor air pollution levels among pregnant women. <i>Atmospheric Environment</i> , 2013 , 64, 287-295	5.3	36
407	Geochemical controls on leaching of lignite-fired combustion by-products from Greece. <i>Applied Geochemistry</i> , 2011 , 26, 1599-1606	3.5	36
406	Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. <i>Chemosphere</i> , 2011 , 85, 565-70	8.4	36
405	Drugs of abuse in airborne particulates in urban environments. Environment International, 2010, 36, 527	-34 .9	36
404	Using PM10 geochemical maps for defining the origin of atmospheric pollution in Andalusia (Southern Spain). <i>Atmospheric Environment</i> , 2010 , 44, 4595-4605	5.3	36
403	Determinants of aerosol lung-deposited surface area variation in an urban environment. <i>Science of the Total Environment</i> , 2015 , 517, 38-47	10.2	35
402	Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999\(\textbf{Q} 008 \) temporal trend of particulate matter. <i>Atmospheric Environment</i> , 2012 , 57, 175-185	5.3	35
401	Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1276-87		35
400	Characterization of atmospheric aerosols by SEM in a rural area in the western part of M\(\text{Mico} \) and its relation with different pollution sources. <i>Atmospheric Environment</i> , 2009 , 43, 6159-6167	5.3	35
399	Size distribution and chemical composition of metalliferous stack emissions in the San Roque petroleum refinery complex, southern Spain. <i>Journal of Hazardous Materials</i> , 2011 , 190, 713-22	12.8	35
398	Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. <i>Journal of Hazardous Materials</i> , 2009 , 166, 94-102	12.8	35
397	African dust and air quality over Spain: Is it only dust that matters?. <i>Science of the Total Environment</i> , 2019 , 686, 737-752	10.2	34
396	Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. <i>Environmental Research</i> , 2018 , 162, 160-165	7.9	34
395	Particulate air pollution and preeclampsia: a source-based analysis. <i>Occupational and Environmental Medicine</i> , 2014 , 71, 570-7	2.1	34
394	Manganese in the urban atmosphere: identifying anomalous concentrations and sources. Environmental Science and Pollution Research, 2011, 18, 173-83	5.1	34

(2010-2006)

393	Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. <i>Environmental Geology</i> , 2006 , 51, 121-132		34	
392	Total mercury in the hair of children by combustion atomic absorption spectrometry (Comb-AAS). <i>Journal of Analytical Toxicology</i> , 2007 , 31, 144-9	2.9	34	
391	Characterisation of the glass fraction of a selection of European coal fly ashes. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 540-546	3.5	34	
390	Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. <i>Environment International</i> , 2020 , 134, 105299	12.9	34	
389	An empirical model to predict road dust emissions based on pavement and traffic characteristics. <i>Environmental Pollution</i> , 2018 , 237, 713-720	9.3	34	
388	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. <i>Science of the Total Environment</i> , 2017 , 584-585, 849-855	10.2	33	
387	The effect of ventilation protocols on airborne particulate matter in subway systems. <i>Science of the Total Environment</i> , 2017 , 584-585, 1317-1323	10.2	33	
386	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 4978-501	o ^{4.4}	33	
385	Phenomenology of high-ozone episodes in NE Spain. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2817	-26838	33	
384	Variation of soluble and insoluble calcium in red rains related to dust sources and transport patterns from North Africa to northeastern Spain. <i>Journal of Geophysical Research</i> , 2007 , 112,		33	
383	Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. <i>Atmospheric Environment</i> , 2007 , 41, 1026-1040	5.3	33	
382	Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors. <i>Faraday Discussions</i> , 2016 , 189, 337-59	3.6	33	
381	Traffic-Related Air Pollution, A Status, and Neurodevelopmental Outcomes among School Children Enrolled in the BREATHE Project (Catalonia, Spain). <i>Environmental Health Perspectives</i> , 2018 , 126, 087001	8.4	33	
380	On the origin of the highest ozone episodes in Spain. <i>Science of the Total Environment</i> , 2016 , 572, 379-3	8 £ 0.2	32	
379	Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires. <i>Atmospheric Environment</i> , 2014 , 89, 85-92	5.3	32	
378	PMIand PMIaources at an insular location in the western Mediterranean by using source apportionment techniques. <i>Science of the Total Environment</i> , 2013 , 456-457, 267-77	10.2	32	
377	High concentrations of heavy metals in PM from ceramic factories of Southern Spain. <i>Atmospheric Research</i> , 2010 , 96, 633-644	5.4	32	
376	Physicochemical variations in atmospheric aerosols recorded at sea onboard the AtlanticMediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM10 trace element geochemistry. Atmospheric Environment 2010, 44, 2563-2576	5.3	32	

375	The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. <i>International Journal of Coal Geology</i> , 2007 , 71, 122-128	5.5	32
374	Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain. Inferences from sulphur isotope geochemistry. <i>Atmospheric Environment</i> , 2000 , 34, 333-345	5.3	32
373	Environmental impact of mineral transformations undergone during coal combustion. <i>Environmental Geology and Water Sciences</i> , 1991 , 18, 11-15		32
372	Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. <i>Atmospheric Environment</i> , 2020 , 224, 117252	5.3	32
371	Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. <i>International Journal of Coal Geology</i> , 2016 , 167, 157-175	5.5	32
370	Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. <i>Brain and Behavior</i> , 2016 , 6, e00467	3.4	32
369	Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004\(\textbf{Z} \) 014: a multi-exponential approach. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11787-11805	6.8	31
368	Cocaine and other illicit drugs in airborne particulates in urban environments: a reflection of social conduct and population size. <i>Environmental Pollution</i> , 2011 , 159, 1241-7	9.3	31
367	Assessing the performance of methods to detect and quantify African dust in airborne particulates. <i>Environmental Science & Environmental Science & En</i>	10.3	31
366	Partitioning of elements in a entrained flow IGCC plant: Influence of selected operational conditions. <i>Fuel</i> , 2010 , 89, 3250-3261	7.1	31
365	Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. <i>Scientific Reports</i> , 2017 , 7, 45956	4.9	30
364	IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. <i>Fuel Processing Technology</i> , 2014 , 124, 222-227	7.2	30
363	Impact of traffic intensity and pavement aggregate size on road dust particles loading. <i>Atmospheric Environment</i> , 2013 , 77, 711-717	5.3	30
362	Monitoring of sources and atmospheric processes controlling air quality in an urban Mediterranean environment. <i>Atmospheric Environment</i> , 2010 , 44, 4879-4890	5.3	30
361	Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. <i>Coal Combustion and Gasification Products</i> , 2010 , 2, 51-65		30
360	Effect of ventilation strategies and air purifiers on the children's exposure to airborne particles and gaseous pollutants in school gyms. <i>Science of the Total Environment</i> , 2020 , 712, 135673	10.2	30
359	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. <i>Environment International</i> , 2021 , 157, 106818	12.9	30
358	Vehicle interior air quality conditions when travelling by taxi. <i>Environmental Research</i> , 2019 , 172, 529-54	4? .9	29

(2007-2015)

357	New particle formation at ground level and in the vertical column over the Barcelona area. <i>Atmospheric Research</i> , 2015 , 164-165, 118-130	5.4	29
356	A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. <i>Science of the Total Environment</i> , 2016 , 562, 822-833	10.2	29
355	Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. <i>Environment International</i> , 2016 , 88, 142-149	12.9	29
354	Lessons from the COVID-19 air pollution decrease in Spain: Now what?. <i>Science of the Total Environment</i> , 2021 , 779, 146380	10.2	29
353	Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield, Guizhou Province, Southwest China. <i>International Journal of Coal Geology</i> , 2017 , 171, 111-129	5.5	28
352	Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. <i>Science of the Total Environment</i> , 2016 , 565, 922-932	10.2	28
351	Aerosol sources in subway environments. <i>Environmental Research</i> , 2018 , 167, 314-328	7.9	28
350	Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain). <i>Environmental Pollution</i> , 2014 , 188, 109-17	9.3	28
349	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern Pyrenees, 1570 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4279-4295	6.8	28
348	Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. <i>Atmospheric Environment</i> , 2008 , 42, 9007-9	0₹₹	28
347	Potential Environmental Applications of Pure Zeolitic Material Synthesized from Fly Ash. <i>Journal of Environmental Engineering, ASCE</i> , 2001 , 127, 994-1002	2	28
346	Environmental impact and potential use of coal fly ash and sub-economical quarry fine aggregates in concrete. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1043-1056	12.8	28
345	Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4052-4069	4.4	27
344	Distribution and pollution assessment of trace elements in marine sediments in the Quintero Bay (Chile). <i>Marine Pollution Bulletin</i> , 2015 , 99, 256-63	6.7	27
343	Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. <i>Atmospheric Environment</i> , 2014 , 88, 320-329	5.3	27
342	Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6443-6460	6.8	27
341	Biochar Derived from Agricultural and Forestry Residual Biomass: Characterization and Potential Application for Enzymes Immobilization. <i>Journal of Biobased Materials and Bioenergy</i> , 2013 , 7, 724-732	1.4	27
340	PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1071-81		27

339	Use of zeolitised coal fly ash for landfill leachate treatment: a pilot plant study. <i>Waste Management</i> , 2007 , 27, 1877-83	8.6	27
338	Air masses and aerosols chemical components in the free troposphere at the subtropical northeast atlantic region. <i>Journal of Atmospheric Chemistry</i> , 2006 , 53, 63-90	3.2	27
337	Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. <i>Atmospheric Environment</i> , 2015 , 106, 392-401	5.3	26
336	Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. <i>Atmospheric Environment</i> , 2014 , 98, 271-282	5.3	26
335	Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2973-2986	6.8	26
334	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 1411-1424	6.8	26
333	. Tellus, Series B: Chemical and Physical Meteorology, 2011 , 63, 255-265	3.3	26
332	Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	26
331	A new method for the simultaneous determination of PAH and metals in samples of atmospheric particulate matter. <i>Atmospheric Environment</i> , 2003 , 37, 4171-4175	5.3	26
330	Distribution of sulfur in coals of the Teruel mining district, Spain. <i>International Journal of Coal Geology</i> , 1991 , 18, 327-346	5.5	26
329	Road Dust Emission Sources and Assessment of Street Washing Effect. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 734-743	4.6	26
328	Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents. <i>Science of the Total Environment</i> , 2018 , 630, 781-789	10.2	25
327	Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. <i>Construction and Building Materials</i> , 2018 , 175, 64-76	6.7	25
326	2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain. <i>Environmental Pollution</i> , 2018 , 236, 570-579	9.3	25
325	Variations in school playground and classroom atmospheric particulate chemistry. <i>Atmospheric Environment</i> , 2014 , 91, 162-171	5.3	25
324	Particulate matter and gaseous pollutants in the Mediterranean Basin: results from the MED-PARTICLES project. <i>Science of the Total Environment</i> , 2014 , 488-489, 297-315	10.2	25
323	Objective identification of synoptic meteorological patterns favouring African dust intrusions into the marine boundary layer of the subtropical eastern north Atlantic region. <i>Meteorology and Atmospheric Physics</i> , 2011 , 113, 109-124	2	25
322	Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant. <i>Environmental Science & Environmental Sc</i>	10.3	25

321	Application of zeolitised coal fly ashes to the depuration of liquid wastes. Fuel, 2005, 84, 1440-1446	7.1	25
320	Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry. <i>Science of the Total Environment</i> , 2017 , 599-600, 2065-2073	10.2	24
319	African dust source regions for observed dust outbreaks over the Subtropical Eastern North Atlantic region, above 25°N. <i>Journal of Arid Environments</i> , 2012 , 78, 100-109	2.5	24
318	Characterisation of dust material emitted during harbour operations (HADA Project). <i>Atmospheric Environment</i> , 2007 , 41, 6331-6343	5.3	24
317	Stabilization of FGD gypsum for its disposal in landfills using amorphous aluminium oxide as a fluoride retention additive. <i>Chemosphere</i> , 2007 , 69, 295-302	8.4	24
316	Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6511-6533	6.8	24
315	Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999\(\mathbb{Q}\)012 period. <i>Atmospheric Environment</i> , 2015, 109, 205-216	5.3	23
314	Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. <i>Journal of Aerosol Science</i> , 2015 , 88, 48-57	4.3	23
313	Arsenic species in atmospheric particulate matter as tracer of the air quality of Do ll ana Natural Park (SW Spain). <i>Chemosphere</i> , 2015 , 119, 1296-1303	8.4	23
312	Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. <i>Science of the Total Environment</i> , 2012 , 424, 182-92	10.2	23
311	Controls on hourly variations in urban background air pollutant concentrations. <i>Atmospheric Environment</i> , 2009 , 43, 4178-4186	5.3	23
310	Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal. <i>Chemosphere</i> , 2008 , 71, 140-6	8.4	23
309	PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. <i>Journal of Environmental Monitoring</i> , 2006 , 8, 1060-8		23
308	Concentration and Sources of PM10 and its Constituents in Alsasua, Spain. <i>Water, Air, and Soil Pollution</i> , 2006 , 174, 385-404	2.6	23
307	Zinc contamination in the bottom and suspended sediments of the Guadalquivir estuary after the Aznalcollar spill (south-western Spain). Control of hydrodynamic processes. <i>Science of the Total Environment</i> , 1999 , 242, 211-220	10.2	23
306	Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. <i>Science of the Total Environment</i> , 2020 , 731, 139002	10.2	22
305	Joint analysis of continental and regional background environments in the western Mediterranean: PM₁ and PM₁₀ concentrations and composition. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1129-1145	6.8	22
304	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8991-9019	6.8	22

303	Trace element mobility in soils seven years after the Aznalcllar mine spill. Chemosphere, 2008, 73, 1240-	6 8.4	22
302	Airborne particulate matter and premature deaths in urban Europe: the new WHO guidelines and the challenge ahead as illustrated by Spain. <i>European Journal of Epidemiology</i> , 2007 , 22, 1-5	12.1	22
301	How to protect school children from the neurodevelopmental harms of air pollution by interventions in the school environment in the urban context. <i>Environment International</i> , 2018 , 121, 199)- 20 8	22
300	Factors controlling particle number concentration and size at metro stations. <i>Atmospheric Environment</i> , 2017 , 156, 169-181	5.3	21
299	Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122935	12.8	21
298	Profiling transient daytime peaks in urban air pollutants: city centre traffic hotspot versus urban background concentrations. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 1535-42		21
297	Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills. <i>Journal of Hazardous Materials</i> , 2008 , 153, 544-50	12.8	21
296	Characterization of total suspended particles around a power station in an urban coastal area in eastern Spain. <i>Environmental Geology</i> , 2001 , 40, 891-896		21
295	Intercomparison of a portable and two stationary mobility particle sizers for nanoscale aerosol measurements. <i>Aerosol Science and Technology</i> , 2016 , 50, 653-668	3.4	21
294	Vertical and horizontal distribution of regional new particle formation events in Madrid. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 16601-16618	6.8	21
293	Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	20
292	Ozone source apportionment during peak summer events over southwestern Europe. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5467-5494	6.8	20
291	Real-time indoor and outdoor measurements of black carbon at primary schools. <i>Atmospheric Environment</i> , 2015 , 120, 417-426	5.3	20
290	Burden of mortality attributed to PM2.5 exposure in cities of Iran; contribution of short-term pollution peaks. <i>Atmospheric Environment</i> , 2020 , 224, 117365	5.3	20
289	Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yenik coal of Late Oligocene age in the Thrace Basin (NW Turkey). <i>International Journal of Coal Geology</i> , 2017 , 181, 103-123	5.5	20
288	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4983-4996	6.8	20
287	Procedural uncertainties of Proctor compaction tests applied on MSWI bottom ash. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1639-44	12.8	20
286	Identification of chemical tracers in the characterisation and source apportionment of inhalable inorganic airborne particles: an overview. <i>Biomarkers</i> , 2009 , 14 Suppl 1, 17-22	2.6	20

285	Effects of local and Saharan particles on cardiovascular disease mortality. <i>Epidemiology</i> , 2012 , 23, 768-9	3.1	20
284	Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal. <i>Fuel</i> , 2010 , 89, 3012-3021	7.1	20
283	Risk minimisation of FGD gypsum leachates by incorporation of aluminium sulphate. <i>Science of the Total Environment</i> , 2008 , 406, 69-75	10.2	20
282	Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 370-8		20
281	Condensing species from flue gas in Puertollano gasification power plant, Spain. Fuel, 2006 , 85, 2229-22	2 <i>4</i> 21	20
280	Synthesis of zeolites using fly ash and their application in removing heavy metals from waters. <i>Science in China Series D: Earth Sciences</i> , 2003 , 46, 967-976		20
279	Daily evolution of sulphate aerosols in a rural area, northeastern Spain lucidation of an atmospheric reservoir effect. <i>Environmental Pollution</i> , 1999 , 105, 397-407	9.3	20
278	Physical and chemical changes in coal fly ash during acidic or neutral wastes treatment, and its effect on the fixation process. <i>Fuel</i> , 2016 , 184, 69-80	7.1	20
277	Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. <i>Science of the Total Environment</i> , 2020 , 737, 139596	10.2	19
276	Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. <i>Chemosphere</i> , 2018 , 190, 454-462	8.4	19
275	Cluster analysis of urban ultrafine particles size distributions. <i>Atmospheric Pollution Research</i> , 2019 , 10, 45-52	4.5	19
274	Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2013 , 65, 1924.	3 ^{3.3}	19
273	Are Saharan dust intrusions increasing the risk of meningococcal meningitis?. <i>International Journal of Infectious Diseases</i> , 2011 , 15, e503	10.5	19
272	Controlling influences on daily fluctuations of inhalable particles and gas concentrations: Local versus regional and exotic atmospheric pollutants at Puertollano, Spain. <i>Atmospheric Environment</i> , 2006 , 40, 3207-3218	5.3	19
271	Characterisation of atmospheric particulates around a coal-fired power station. <i>International Journal of Coal Geology</i> , 1999 , 40, 175-188	5.5	19
270	Determination of pyritic sulphur and organic matter contents in Spanish subbituminous coals by X-ray power diffraction. <i>International Journal of Coal Geology</i> , 1993 , 22, 279-293	5.5	19
269	Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia). <i>Environmental Research</i> , 2017 , 158, 153-166	7.9	18
268	The role of PIXE in the AIRUSE project E esting and development of air quality mitigation measures in Southern Europe[] <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 363, 92-98	1.2	18

267	Traffic-related air pollution and spectacles use in schoolchildren. <i>PLoS ONE</i> , 2017 , 12, e0167046	3.7	18
266	Effects of water and CMA in mitigating industrial road dust resuspension. <i>Atmospheric Environment</i> , 2016 , 131, 334-340	5.3	18
265	Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas. <i>Science of the Total Environment</i> , 2016 , 544, 391-9	10.2	18
264	Case studies of new particle formation and evaporation processes in the western Mediterranean regional background. <i>Atmospheric Environment</i> , 2013 , 81, 651-659	5.3	18
263	Overview of the meteorology and transport patterns during the DAURE field campaign and their impact to PM observations. <i>Atmospheric Environment</i> , 2013 , 77, 607-620	5.3	18
262	Development of a non-conventional sorbent from fly ash and its potential use in acid wastewater neutralization and heavy metal removal. <i>Chemical Engineering Journal</i> , 2011 , 166, 896-905	14.7	18
261	Saharan dust episodes and pregnancy. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3222-8		18
260	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer		18
259	Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. <i>International Journal of Coal Geology</i> , 2020 , 218, 103366	5.5	18
258	Particle-phase concentrations and sources of legacy and novel flame retardants in outdoor and indoor environments across Spain. <i>Science of the Total Environment</i> , 2019 , 649, 1541-1552	10.2	18
257	Synergistic effect of the occurrence of African dust outbreaks on atmospheric pollutant levels in the Madrid metropolitan area. <i>Atmospheric Research</i> , 2019 , 226, 208-218	5.4	17
256	Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. <i>Atmospheric Environment</i> , 2013 , 69, 86-93	5.3	17
255	Reducing the health effect of particles from agriculture. <i>Lancet Respiratory Medicine,the</i> , 2015 , 3, 831-2	35.1	17
254	Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods. <i>Journal of Environmental Management</i> , 2009 , 91, 133-41	7.9	17
253	Physico-chemical characterization of atmospheric aerosols in a rural area affected by the Aznalcollar toxic spill, south-west Spain during the soil reclamation activities. <i>Science of the Total Environment</i> , 1999 , 242, 89-104	10.2	17
252	Characterization of Road Dust Emissions in Milan: Impact of Vehicle Fleet Speed. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2438-2449	4.6	17
251	Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. <i>International Journal of Coal Geology</i> , 2021 , 235, 103677	5.5	17
250	Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. <i>Science of the Total Environment</i> , 2017 , 593-594, 543-551	10.2	16

249	Do air quality targets really represent safe limits for lung cancer risk?. <i>Science of the Total Environment</i> , 2017 , 580, 74-82	10.2	16
248	Analysis of PM2.5 in CEdoba, Argentina under the effects of the El Nië Southern Oscillation. <i>Atmospheric Environment</i> , 2017 , 171, 49-58	5.3	16
247	Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. <i>Environmental Science & Environmental Science & Environ</i>	- 1 8·3	16
246	Air quality trends in an industrialised area of SW Spain. <i>Journal of Cleaner Production</i> , 2018 , 186, 465-47-	410.3	16
245	Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions. <i>Environmental Research</i> , 2016 , 145, 154-161	7.9	16
244	CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain). <i>Geoscientific Model Development</i> , 2019 , 12, 2811-2835	6.3	16
243	Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999\(\mathbb{D}\)008. Procedia Environmental Sciences, 2011, 4, 198-208		16
242	Utilisation of zeolitised coal fly ash as immobilising agent of a metallurgical waste. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 305-310	3.5	16
241	Physicochemical Characterization of Spanish Fly Ashes. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects,</i> 1999 , 21, 883-898		16
240	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks <i>Environmental Science & Environmental Scie</i>	10.3	16
239	The DAURE field campaign: meteorological overview		16
238	Impact of wood combustion on indoor air quality. Science of the Total Environment, 2020, 705, 135769	10.2	16
237	The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balkesir (Western Turkey). <i>International Journal of Coal Geology</i> , 2020 , 228, 103548	5.5	16
236	Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona. <i>Science of the Total Environment</i> , 2015 , 532, 344-52	10.2	15
235	Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1149-1169	6.8	15
234	New Directions: The future of European urban air quality monitoring. <i>Atmospheric Environment</i> , 2014 , 87, 258-260	5.3	15
233	Air quality comparison between two European ceramic tile clusters. <i>Atmospheric Environment</i> , 2013 , 74, 311-319	5.3	15
232	Quantifying Dry and Wet Deposition Fluxes in Two Regions of Contrasting African Influence: The NE Iberian Peninsula and the Canary Islands. <i>Atmosphere</i> , 2017 , 8, 86	2.7	15

231	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2718-28		15
230	Characterization of a long range transport pollution episode affecting PM in SW Spain. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 1158-71		15
229	Determining suitability of a fly ash for silica extraction and zeolite synthesis. <i>Journal of Chemical Technology and Biotechnology</i> , 2004 , 79, 1009-1018	3.5	15
228	Zeolitic material synthesised from fly ash: use as cationic exchanger. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 299-304	3.5	15
227	Environmental monitoring using surface water, river sediments, and vegetation: A case study in the Famatina Range, La Rioja, NW Argentina. <i>Environment International</i> , 1995 , 21, 807-820	12.9	15
226	Short-term health effects from outdoor exposure to biomass burning emissions: A review. <i>Science of the Total Environment</i> , 2021 , 781, 146739	10.2	15
225	The mode of occurrence and origin of minerals in the Early Permian high-rank coals of the Jimunai depression, Xinjiang Uygur Autonomous Region, NW China. <i>International Journal of Coal Geology</i> , 2019 , 205, 58-74	5.5	14
224	Industrial sources of primary and secondary organic aerosols in two urban environments in Spain. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10413-24	5.1	14
223	Anthropogenic versus mineral aerosols in the stimulation of microbial planktonic communities in coastal waters of the northwestern Mediterranean Sea. <i>Science of the Total Environment</i> , 2017 , 574, 55	3 ⁻¹ 568	14
222	Characterization of exposure to carbon nanotubes in an industrial setting. <i>Annals of Occupational Hygiene</i> , 2015 , 59, 586-99		14
221	Weak Pressure Gradient over the Iberian Peninsula and African Dust Outbreaks: A New Dust Long-Transport Scenario. <i>Bulletin of the American Meteorological Society</i> , 2012 , 93, 1125-1132	6.1	14
220	Extraction of Water-Soluble Impurities from Fly Ash. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2000 , 22, 733-749		14
219	Molecular insights into new particle formation in Barcelona, Spain. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10029-10045	6.8	14
218	Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. <i>International Journal of Coal Geology</i> , 2016 , 154-155, 1-15	5.5	13
217	Levels, composition and source apportionment of rural background PM10 in western Mexico (state of Colima). <i>Atmospheric Pollution Research</i> , 2011 , 2, 409-417	4.5	13
216	Study of urban atmospheric pollution in Navarre (Northern Spain). <i>Environmental Monitoring and Assessment</i> , 2007 , 134, 137-51	3.1	13
215	Zeolite synthesis from a high SiAl fly ash from East China. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 267-273	3.5	13
214	Mineralogy and Elemental Contents of the Sirnak Asphaltite, Southeast Turkey. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2002 , 24, 703-713		13

213	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities		13
212	Emissions and source allocation of carbonaceous air pollutants from wood stoves in developed countries: A review. <i>Atmospheric Pollution Research</i> , 2020 , 11, 234-251	4.5	13
211	A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmanck Basin, NW Turkey), with emphasis on syngenetic zeolite formation. <i>International Journal of Coal Geology</i> , 2021 , 237, 103691	5.5	13
2 10	Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10018-10029	5.1	12
209	Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction. <i>Science of the Total Environment</i> , 2018 , 628-629, 169-176	10.2	12
208	Potential of hazardous waste encapsulation in concrete with coal fly ash and bivalve shells. <i>Journal of Cleaner Production</i> , 2018 , 185, 870-881	10.3	12
207	2005\(\textstyle{1}\)017 ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 7445-7465	6.8	12
206	Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		12
205	Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments. <i>Environmental Geology</i> , 2009 , 57, 411-420		12
204	Zeolites in Tertiary coal from the Byirhan mine, Beypazari, Turkey. <i>Mineralium Deposita</i> , 1996 , 31, 529-53	34 .8	12
203	Synthesis of industrial minerals from fly ash. <i>Coal Science and Technology</i> , 1995 , 1979-1982		12
202	Chemistry of dry and wet atmospheric deposition over the Balearic Islands, NW Mediterranean: Source apportionment and African dust areas. <i>Science of the Total Environment</i> , 2020 , 747, 141187	10.2	12
201	Integration of Powdered Ca-Activated Zeolites in a Hybrid SorptionMembrane Ultrafiltration Process for Phosphate Recovery. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 6204-6212	3.9	12
200	Analysis of summer O₃ in the Madrid air basin with the LOTOS-EUROS chemical transport model. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14211-14232	6.8	12
199	Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. <i>Atmospheric Environment</i> , 2018 , 185, 207-220	5.3	12
198	Recovery of nutrients (N-P-K) from potassium-rich sludge anaerobic digestion side-streams by integration of a hybrid sorption-membrane ultrafiltration process: Use of powder reactive sorbents as nutrient carriers. <i>Science of the Total Environment</i> , 2017 , 599-600, 422-430	10.2	11
197	Formation and alteration of airborne particles in the subway environment. Environmental Sciences:	4.3	11
	Processes and Impacts, 2017 , 19, 59-64	4 ·9	

195	Assessment of the variability of atmospheric pollution in National Parks of mainland Spain. <i>Atmospheric Environment</i> , 2016 , 132, 332-344	5.3	11
194	Predictors of personal exposure to black carbon among women in southern semi-rural Mozambique. <i>Environment International</i> , 2019 , 131, 104962	12.9	11
193	Influence of an aluminium additive in aqueous and solid speciation of elements in flue gas desulphurisation (FGD) system. <i>Energy</i> , 2013 , 50, 438-444	7.9	11
192	Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization. <i>Environmental Science & Environmental Science & Envi</i>	10.3	11
191	Unusual speciation and retention of Hg at a coal-fired power plant. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 7890-7	10.3	11
190	Simple estimates of vehicle-induced resuspension rates. <i>Journal of Environmental Management</i> , 2011 , 92, 2855-9	7.9	11
189	Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours. <i>Atmospheric Environment</i> , 2007 , 41, 6356-6365	5.3	11
188	Mass Balance of Major and Trace Elements in a Coal-Fired Power Plant. <i>Energy Sources, Part A:</i> Recovery, Utilization and Environmental Effects, 2006 , 28, 1311-1320	1.6	11
187	Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. <i>International Journal of Coal Geology</i> , 2020 , 231, 103604	5.5	11
186	Geological controls on enrichment of Mn, Nb (Ta), Zr (Hf), and REY within the Early Permian coals of the Jimunai Depression, Xinjiang Province, NW China. <i>International Journal of Coal Geology</i> , 2019 , 215, 103298	5.5	11
185	Interaction between airborne copper exposure and ATP7B polymorphisms on inattentiveness in scholar children. <i>International Journal of Hygiene and Environmental Health</i> , 2017 , 220, 51-56	6.9	10
184	Vertical and horizontal fall-off of black carbon and NO within urban blocks. <i>Science of the Total Environment</i> , 2019 , 686, 236-245	10.2	10
183	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 409-429	6.8	10
182	Improving the modeling of road dust levels for Barcelona at urban scale and street level. <i>Atmospheric Environment</i> , 2016 , 125, 231-242	5.3	10
181	Variation of PM2.5 concentrations in relation to street washing activities. <i>Atmospheric Environment</i> , 2012 , 54, 465-469	5.3	10
180	Meso- and microporosity of the subbituminous kM2 coal seam (Soma, Turkey) and its relationship with coal characteristics. <i>International Journal of Coal Geology</i> , 2017 , 184, 73-87	5.5	10
179	Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction. <i>Fuel</i> , 2013 , 112, 450-458	7.1	10
178	Fine particle receptor modeling in the atmosphere of Mexico City. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 1417-28	2.4	10

177	A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. <i>Atmospheric Environment</i> , 2010 , 44, 5112-5121	5.3	10
176	Use of the axial dispersion model to describe the O3 and O3 /H2O2 advanced oxidation of alachlor in water. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 584-592	3.5	10
175	Trace element fractionation processes in resuspended mineral aerosols extracted from Australian continental surface materials. <i>Soil Research</i> , 2008 , 46, 128	1.8	10
174	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. <i>Science of the Total Environment</i> , 2020 , 747, 141266	10.2	10
173	Potential of Hazardous Waste Encapsulation in Concrete Compound Combination with Coal Ash and Quarry Fine Additives. <i>Environmental Science & Environmental Science & Environm</i>	10.3	9
172	Characterization of organic aerosol at a rural site influenced by olive waste biomass burning. <i>Chemosphere</i> , 2020 , 248, 125896	8.4	9
171	Vertical and horizontal variability of PM₁₀ source contributions in Barcelona during SAPUSS. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6785-6804	6.8	9
170	Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. <i>Science of the Total Environment</i> , 2018 , 642, 148-154	10.2	9
169	Copper Flash Smelting Flue Dust as a Source of Germanium. <i>Waste and Biomass Valorization</i> , 2017 , 8, 2121-2129	3.2	9
168	Road Traffic: A Major Source of Particulate Matter in Europe. <i>Handbook of Environmental Chemistry</i> , 2013 , 165-193	0.8	9
167	Atmospheric composition change research: Time to go post-normal?. <i>Atmospheric Environment</i> , 2009 , 43, 5423-5432	5.3	9
166	Levels of outdoor PM2.5, absorbance and sulphur as surrogates for personal exposures among post-myocardial infarction patients in Barcelona, Spain. <i>Atmospheric Environment</i> , 2007 , 41, 1539-1549	5.3	9
165	Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor. <i>Atmospheric Environment</i> , 2007 , 41, 6344-6355	5.3	9
164	Modelling of the glass phase in fly ashes using network connectivity theory. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 240-245	3.5	9
163	Source apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a traffic-influenced urban atmosphere, in Portugal. <i>Atmospheric Environment</i> , 2020 , 223, 117217	5.3	9
162	Rapid changes of dust geochemistry in the Saharan Air Layer linked to sources and meteorology. <i>Atmospheric Environment</i> , 2020 , 223, 117186	5.3	9
161	Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5'at different sites within a large metropolitan area. <i>Environmental Research</i> , 2021 , 192, 110257	7.9	9
160	An evaluation of mass, number concentration, chemical composition and types of particles in a cafeteria before and after the passage of an antismoking law. <i>Particuology</i> , 2013 , 11, 527-532	2.8	8

159	Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components. <i>Atmospheric Environment</i> , 2010 , 44, 2552-2562	5.3	8
158	Metal Adsorption on Clays from Pyrite Contaminated Soil. <i>Journal of Environmental Engineering,</i> ASCE, 2005 , 131, 1052-1056	2	8
157	Determination of pyrrhotite (Fe1\(\text{\text{NS}} \) occurring in aggregates by X ray fluorescence. <i>Cement and Concrete Research</i> , 1990 , 20, 394-397	10.3	8
156	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. <i>Science of the Total Environment</i> , 2021 , 768, 14528	2 ^{10.2}	8
155	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. <i>Aerosol and Air Quality Research</i> , 2021 , 21, 200567	4.6	8
154	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3345-3370	6.8	8
153	The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions. <i>Journal of Environmental Sciences</i> , 2015 , 32, 72-80	6.4	7
152	Variations in Fly Ash Composition from the Soma Power Plant, Turkey. <i>Energy Sources Part A Recovery, Utilization, and Environmental Effects</i> , 2005 , 27, 1473-1481		7
151	. Tellus, Series B: Chemical and Physical Meteorology, 2001 , 53, 40-52	3.3	7
150	Presenting SAPUSS: solving aerosol problem by using synergistic strategies at Barcelona, Spain		7
149	Hourly elemental concentrations in PM _{2.5} aerosols sampled simultaneously at urban background and road site		7
148	African dust outbreaks over the Mediterranean Basin during 2001\(\bar{L}\)011: PM ₁₀ concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology		7
147	Health effects of desert dust and sand storms: a systematic review and meta-analysis protocol. <i>BMJ Open</i> , 2019 , 9, e029876	3	7
146	The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications. <i>Science of the Total Environment</i> , 2020 , 700, 134444	10.2	7
145	Source apportionment of urban PM in Barcelona during SAPUSS using organic and inorganic components. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 32114-32127	5.1	6
144	Variability of air pollutants, and PM composition and sources at a regional background site in the Balearic Islands: Review of western Mediterranean phenomenology from a 3-year study. <i>Science of the Total Environment</i> , 2020 , 717, 137177	10.2	6
143	Relating high ozone, ultrafine particles, and new particle formation episodes using cluster analysis. <i>Atmospheric Environment: X</i> , 2019 , 4, 100051	2.8	6
142	New Directions: Cleaning the air: Will the European Commission's clean air policy package of December 2013 deliver?. <i>Atmospheric Environment</i> , 2014 , 91, 172-174	5.3	6

141	Study of boron behaviour in two Spanish coal combustion power plants. <i>Journal of Environmental Management</i> , 2011 , 92, 2586-9	7.9	6	
140	Chapter Fiveteen Identification, Resolution and Apportionment of Contamination Sources. Developments in Integrated Environmental Assessment, 2008 , 269-284		6	
139	Thermal analysis of fly ashes sourced from European non-blended coals. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 246-250	3.5	6	
138	Wet-only sequential deposition in a rural area in north-eastern Spain. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2001 , 53, 40-52	3.3	6	
137	Origin of PM10 Pollution Episodes in an Industrialized Mega-City in Central China. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 338-346	4.6	6	
136	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data		6	
135	Variability in regional background aerosols within the Mediterranean		6	
134	Forecasting the air pollution episode potential in the Canary Islands. <i>Advances in Science and Research</i> , 2008 , 2, 21-26		6	
133	The influence of COVID-19 preventive measures on the air quality in Abu Dhabi (United Arab Emirates). <i>Air Quality, Atmosphere and Health</i> , 2021 , 14, 1-9	5.6	6	
132	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and their Application to COVID-19 Outbreaks		6	
131	Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 431-455	6.8	6	
130	Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 22688-22703	5.1	5	
129	Analysis of predictors related to soil contamination in recreational areas of Romania. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18885-93	5.1	5	
128	Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. <i>Atmosphere</i> , 2020 , 11, 149	2.7	5	
127	Fixation of treated phosphate waste and its use in concrete. <i>Journal of Cleaner Production</i> , 2018 , 178, 89-97	10.3	5	
126	Production of environmentally friendly sand-like products from granitoid waste sludge and coal fly ash for civil engineering. <i>Journal of Cleaner Production</i> , 2019 , 238, 117880	10.3	5	
125	New Directions: Four to two Powered two wheelers changing the European urban motor vehicle census. <i>Atmospheric Environment</i> , 2013 , 77, 1083-1084	5.3	5	
124	Road traffic and sandy playground influence on ambient pollutants in schools. <i>Atmospheric Environment</i> , 2015 , 111, 94-102	5.3	5	

123	Modelling Arsenic, Lead, Cadmium and Nickel Ambient Air Concentrations in Spain 2011,		5
122	Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis. <i>FreseniuseJournal of Analytical Chemistry</i> , 1997 , 357, 934-940		5
121	New Directions: Legislative considerations for controlling exposure to atmospheric aerosols in rural areas. <i>Atmospheric Environment</i> , 2008 , 42, 8979-8984	5.3	5
120	Determination of trace element affinities in coal by laser ablation microprobe-inductively coupled plasma mass spectrometry. <i>Geological Society Special Publication</i> , 1995 , 82, 147-155	1.7	5
119	How can ventilation be improved on public transportation buses? Insights from CO measurements. <i>Environmental Research</i> , 2021 , 112451	7.9	5
118	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) [Part 2: Analysis of the biomass burning contribution and the modern carbon fraction		5
117	Chemistry and sources of PM2.5 and volatile organic compounds breathed inside urban commuting and tourist buses. <i>Atmospheric Environment</i> , 2020 , 223, 117234	5.3	5
116	Organophosphate esters in airborne particles from subway stations. <i>Science of the Total Environment</i> , 2021 , 769, 145105	10.2	5
115	Increase in secondary organic aerosol in an urban environment. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8323-8339	6.8	5
114	2005 I 018 trends in ozone peak concentrations and spatial contributions in the Guadalquivir Valley, southern Spain. <i>Atmospheric Environment</i> , 2021 , 254, 118385	5.3	5
113	Understanding the impact of FGD technologies on the emissions of key pollutants in a Co-Firing power plant. <i>Journal of the Energy Institute</i> , 2020 , 93, 518-532	5.7	5
112	Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting. <i>Environmental Research</i> , 2020 , 191, 109978	7.9	4
111	Mineralogy and Geochemistry of Late Permian Coals within the Tongzi Coalfield in Guizhou Province, Southwest China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 44	2.4	4
110	Fly ash content and distribution in lake sediments around a large power station: inferences from magnetic susceptibility analysis. <i>Environmental Geochemistry and Health</i> , 1994 , 16, 9-18	4.7	4
109	Physico-Chemical And Mineralogical Characterization Op Mining Wastes Used In Construction. <i>Studies in Environmental Science</i> , 1991 , 48, 215-223		4
108	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe		4
107	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain		4
106	The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements		4

105	Indoor/outdoor relationships of quasi-ultrafine, accumulation and coarse mode particles in school environments in Barcelona: chemical composition and sources		4	
104	Frequency of new particle formation events in the urban Mediterranean climate		4	
103	Chemical characterization of submicron regional background aerosols in the Western Mediterranean using an Aerosol Chemical Speciation Monitor		4	
102	Case Studies of Source Apportionment and Suggested Measures at Southern European Cities. <i>Issues in Environmental Science and Technology</i> , 2016 , 168-263	0.7	4	
101	Indoor Sources of Air Pollutants. Issues in Environmental Science and Technology, 2019, 1-34	0.7	4	
100	Association of short-term exposure to air pollution with mortality in a middle eastern tourist city. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 1223-1234	5.6	4	
99	The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. <i>Cryosphere</i> , 2021 , 15, 1157-1172	5.5	4	
98	Response to "Quantifying the health impacts of ambient air pollutants: methodological errors must be avoided". <i>International Journal of Public Health</i> , 2016 , 61, 387-8	4	4	
97	Source contribution and origin of PM10 and arsenic in a complex industrial region (Huelva, SW Spain). <i>Environmental Pollution</i> , 2021 , 274, 116268	9.3	4	
96	A phenomenology of new particle formation (NPF) at 13 European sites. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11905-11925	6.8	4	
95	Compositional changes of PM in NE Spain during 2009-2018: A trend analysis of the chemical composition and source apportionment. <i>Science of the Total Environment</i> , 2021 , 795, 148728	10.2	4	
94	Response to: Premature deaths attributed to ambient air pollutants: let us interpret the Robins-Greenland theorem correctly. <i>International Journal of Public Health</i> , 2017 , 62, 339-341	4	3	
93	Organic Air Quality Markers of Indoor and Outdoor PM Aerosols in Primary Schools from Barcelona. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	3	
92	Air Quality in Subway Systems 2018 , 289-321		3	
91	Non-technological Measures on Road Traffic to Abate Urban Air Pollution 2018 , 229-260		3	
90	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign 2007 ,		3	
89	PMx Data Processing in Ceramic Tile Manufacturing Emissions. <i>Key Engineering Materials</i> , 2004 , 264-268, 2453-2456	0.4	3	
88	Estudio y evaluacifi de la contaminacifi atmosffica por material particulado en Espa li : necesidades derivadas de la propuesta de la directiva del consejo relativa a partfiulas PM10 y PM2.5 e implicaciones en la industria cerfinica. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i>	1.9	3	

87	Origin and SEM analysis of aerosols in the high mountain of Tenerife (Canary Islands). <i>Natural Science</i> , 2010 , 02, 1119-1129	0.5	3
86	Trends of particulate matter (PM _{2.5}) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002Ø010)		3
85	Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain		3
84	On the spatial distribution and evolution of ultrafine aerosols in urban air		3
83	Modulation of Saharan dust export by the North African dipole		3
82	Mediterranean desert dust outbreaks and their vertical structure based on remote sensing data		3
81	Mineralogical and geochemical variations from coal to deposited dust and toxicity of size-segregated respirable dust in a blasting mining underground coal mine in Hunan Province, South China. <i>International Journal of Coal Geology</i> , 2021 , 248, 103863	5.5	3
80	Enrichment of Litatriff and SeMotrMasPb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. <i>Energies</i> , 2020 , 13, 6660	3.1	3
79	Behaviour and speciation of inorganic trace pollutants in a coal-fired power plant equipped with DENOX-SCR-ESP-NH3FGD controls. <i>Fuel</i> , 2021 , 289, 119927	7.1	3
78	Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach. <i>Atmospheric Measurement Techniques</i> , 2021, 14, 6335-6355	4	3
77	Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. <i>Science of the Total Environment</i> , 2021 , 800, 149486	10.2	3
76	Comparative study of bulk and partial digestion methods for airborne PM10-bound elements in a high mineral dust urban site in Constantine, Algeria. <i>International Journal of Environmental Analytical Chemistry</i> , 2017 , 97, 1132-1150	1.8	2
75	Mineralogical and Environmental Geochemistry of Coal Combustion Products from Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, Northwest China. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 496	2.4	2
74	Geological Controls on Mineralogy and Geochemistry of the Permian and Jurassic Coals in the Shanbei Coalfield, Shaanxi Province, North China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 138	2.4	2
73	Mechanisms of Climate Variability, Air Quality and Impacts of Atmospheric Constituents in the Mediterranean Region. <i>Advances in Global Change Research</i> , 2013 , 119-156	1.2	2
72	Open air mineral treatment operations and ambient air quality: assessment and source apportionment. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2939-51		2
71	BIOMASS BURNING CONTRIBUTIONS TO URBAN AEROSOLS IN A COASTAL MEDITERRANEAN CITY. <i>ISEE Conference Abstracts</i> , 2011 , 2011,	2.9	2
70	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols 2010 ,		2

69	African dust influence on ambient PM levels in South-Western Europe (Spain and Portugal): A quantitative approach to support implementation of Air Quality Directives. <i>IOP Conference Series: Earth and Environmental Science</i> , 2009 , 7, 012018	0.3	2
68	Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. <i>Atmospheric Environment: X</i> , 2021 , 12, 100145	2.8	2
67	Variability of levels of PM, black carbon and particle number concentration in selected European cities		2
66	Trends of road dust emissions contributions on ambient PM levels at rural, urban and industrial sites in Southern Spain		2
65	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona, Spain		2
64	Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high altitude site in the Western Mediterranean Basin		2
63	A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London		2
62	TOTAL SUSPENDED PARTICLES AND PM10 IN AMBIENT AIR IN MADRID (SPAIN). <i>Journal of Aerosol Science</i> , 2001 , 32, 771-772	4.3	2
61	Joint analysis of continental and regional background environments in the Western Mediterranean: PM ₁ and PM ₁₀ concentrations and composition		2
60	Enrichment of Nb-Ta-Zr-W-Li in the Late Carboniferous Coals from the Weibei Coalfield, Shaanxi, North China. <i>Energies</i> , 2020 , 13, 4818	3.1	2
59	Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 41702-	4 ⁵ 1716	2
58	Trends in primary and secondary particle number concentrations in urban and regional environments in NE Spain. <i>Atmospheric Environment</i> , 2021 , 244, 117982	5.3	2
57	Associations between sources of particle number and mortality in four European cities. <i>Environment International</i> , 2021 , 155, 106662	12.9	2
56	Contribution of Desert Dust Transport to Air Quality Degradation of Urban Environments Recent Model Developments 2004 , 279-287		2
55	Chemistry and particle size distribution of respirable coal dust in underground mines in Central Eastern Europe. <i>International Journal of Coal Science and Technology</i> , 2022 , 9, 1	4.5	2
54	How do ultrafine particles in urban air affect ambulatory blood pressure?. <i>Journal of Hypertension</i> , 2020 , 38, 845-849	1.9	1
53	Urban case studies: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 473-514	3.6	1
52	Characterisation of Airborne Particulate Matter in Different European Subway Systems 2017,		1

51	Atmospheric Particle Size Distributions in the Spanish Network of Environmental DMAs (REDMAAS). <i>IOP Conference Series: Earth and Environmental Science</i> , 2015 , 28, 012001	0.3	1
50	Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. <i>Handbook of Environmental Chemistry</i> , 2015 , 159-179	0.8	1
49	Psychoactive Substances in Airborne Particles in the Urban Environment. <i>Handbook of Environmental Chemistry</i> , 2012 , 435-460	0.8	1
48	A note on particulate matter, total mortality and Saharan dust in Madrid. <i>Science of the Total Environment</i> , 2012 , 441, 290	10.2	1
47	Significant enrichment of Rb and Cs in the Late Triassic coals from the Coc Sau surface mine, Cam Pha Coalfield, Quang Ninh Province, Vietnam. <i>Ore Geology Reviews</i> , 2022 , 142, 104700	3.2	1
46	Children's exposure to size-fractioned particulate matter: Chemical composition and internal dose <i>Science of the Total Environment</i> , 2022 , 823, 153745	10.2	1
45	Mitigation strategies: Castelli, Spain 2013 , 150-160		1
44	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality		1
43	Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system		1
42	Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona, Spain		1
41	African dust outbreaks over the western Mediterranean basin: 11 year characterization of atmospheric circulation patterns and dust source areas		1
40	Unravelling the Origin of High Ozone Concentrations in Southwestern Europe. <i>Springer Proceedings in Complexity</i> , 2020 , 17-21	0.3	1
39	Long-term real-time chemical characterization of submicron aerosols at Montsec (Southern Pyrenees, 1570 m a.s.l.)		1
38	Summer ammonia measurements in a densely populated Mediterranean city		1
37	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern~Pyrenees, 1570 m a.s.l.)		1
36	Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian Coalfield, Guangxi Province. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 301	2.4	1
35	Relationship between ambient black carbon and daily mortality in Tehran, Iran: a distributed lag nonlinear time series analysis. <i>Journal of Environmental Health Science & Engineering</i> , 2021 , 19, 907-916	2.9	1
34	Geochemical Characteristics of Early Permian Pyroclastic Rocks in the Jimunai Basin, West Junggar, Xinjiang (NW China): Implications for Provenance and Tectonic Setting. <i>Acta Geologica Sinica</i> , 2021 , 95, 794-809	0.7	1

33	Evaluation of chemical stabilisation methods of coal-petcoke fly ash to reduce the mobility of Mo and Ni against environmental concerns. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111488	7	1
32	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006787	5.9	1
31	Vertical and horizontal distribution of regional new particle formation events in Madrid 2018,		1
30	Current State of Particulate Air Quality 2018 , 1-19		1
29	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. <i>Environment International</i> , 2021 , 156, 106732	12.9	1
28	Short-term effect of air pollution on attention function in adolescents (ATENC!) A randomized controlled trial in high schools in Barcelona, Spain. <i>Environment International</i> , 2021 , 156, 106614	12.9	1
27	Advanced instrumental approaches for chemical characterization of indoor particulate matter. <i>Applied Spectroscopy Reviews</i> ,1-41	4.5	1
26	Increasing atmospheric dust transport towards the western Mediterranean over 1948 2 020. <i>Npj Climate and Atmospheric Science</i> , 2022 , 5,	8	1
25	Zeolites in Tertiary coal from the ?ayirhan mine, Beypazari, Turkey. <i>Mineralium Deposita</i> , 1996 , 31, 529-	53 8 8	1
24	Characterization of deposited dust and its respirable fractions in underground coal mines: Implications for oxidative potential-driving species and source apportionment. <i>International Journal of Coal Geology</i> , 2022 , 258, 104017	5.5	1
23	Primary and secondary organic winter aerosols in Mediterranean cities under different mixing layer conditions (Barcelona and Granada) <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	O
22	Compliance with 2021 WHO air quality guidelines across Europe will require radical measures. <i>Environmental Research Letters</i> , 2022 , 17, 021002	6.2	Ο
21	Utilization of Boiler Slag from Pulverized-Coal-Combustion Power Plants in China for Manufacturing Acoustic Materials. <i>Energies</i> , 2020 , 13, 5705	3.1	О
20	Bioaerosols in public and tourist buses. <i>Aerobiologia</i> , 2021 , 37, 525-541	2.4	0
19	Understanding the local and remote source contributions to ambient O during a pollution episode using a combination of experimental approaches in the Guadalquivir valley, southern Spain. <i>Science of the Total Environment</i> , 2021 , 777, 144579	10.2	0
18	Workplace exposure to traffic-derived nanoscaled particulates. <i>Journal of Physics: Conference Series</i> , 2011 , 304, 012006	0.3	
17	Novel Products and Applications with Combustion Residues199-378		
16	CHARACTERISATION OF AMBIENT AIR PM DURING AFRICAN OUTBREAKS OVER NORTHEASTERN IBERIAN PENINSULA AND THE CANARY ISLANDS. <i>Journal of Aerosol Science</i> , 2004 , 35, S1055-S1056	4.3	

15	MEASUREMENT OF PARTICULATE MATTER EMITTED DURING BULK HANDLING ACTIVITIES IN A HARBOUR AREA IN SPAIN. <i>Journal of Aerosol Science</i> , 2004 , 35, S1001-S1002	4.3
14	INDALO 2003 FIELD CAMPAIGN. Journal of Aerosol Science, 2004, 35, S981-S982	4.3
13	Comparison between analytical and mineralometric methods in regional scheelite exploration. <i>Journal of Geochemical Exploration</i> , 1992 , 43, 205-211	3.8
12	PM10 AND PM2.5 IN A STREET CANYON IN NE SPAIN. Journal of Aerosol Science, 2001, 32, 675-676	4.3
11	SOURCE APPORTIONMENT OF PM10 IN A RURAL SITE IN NORTHEAST SPAIN. <i>Journal of Aerosol Science</i> , 2001 , 32, 789-790	4.3
10	Potential Impact of a Low Emission Zone on Street-Level Air Quality in Barcelona City Using CALIOPE-Urban Model. <i>Springer Proceedings in Complexity</i> , 2020 , 171-176	0.3
9	Black Carbon Exposure of Schoolchildren in Barcelona. Springer Proceedings in Complexity, 2016, 173-7	1750.3
8	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities 2016 , 177-218	
7	PM: environmental monitoring and mitigation 2013 , 2-6	
6	Mitigation strategies: Barcelona, Spain 2013 , 106-120	
5	Future perspective and research priorities 2013 , 162-175	
4	New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 17	2.4
3	Timescales of mixing and of chemistry: general discussion. Faraday Discussions, 2016, 189, 253-76	3.6
2	Public Transport Strikes and Their Relationships With Air Pollution, Mortality, and Hospital Admissions. <i>American Journal of Epidemiology</i> , 2020 , 189, 116-119	3.8
1	Chemical Speciation and Leaching Behavior of Hazardous Trace Elements in Coal Combustion Products from Coal-Fired Power Stations in China <i>ACS Omega</i> , 2022 , 7, 14697-14711	3.9