

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530195/publications.pdf Version: 2024-02-01

	26610	17580
16,745	56	121
citations	h-index	g-index
213	213	19243
docs citations	times ranked	citing authors
	citations 213	16,745 56 citations h-index 213 213

#	Article	IF	CITATIONS
1	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	4.5	1,432
2	Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 2016, 351, 397-400.	6.0	1,042
3	Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 2014, 156, 836-843.	13.5	930
4	iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461, 86-90.	13.7	737
5	m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 289-301.	5.2	483
6	Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell, 2014, 157, 979-991.	13.5	451
7	One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24, 372-375.	5.7	397
8	Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31, 684-686.	9.4	395
9	MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Molecular Cancer, 2018, 17, 1.	7.9	384
10	Generation of Fertile Cloned Rats by Regulating Oocyte Activation. Science, 2003, 302, 1179-1179.	6.0	372
11	Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells InÂVitro. Cell Stem Cell, 2016, 18, 330-340.	5.2	327
12	Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nature Communications, 2019, 10, 1898.	5.8	325
13	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27, 1100-1114.	5.7	306
14	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	13.5	306
15	Functional 3D Neural Miniâ€Tissues from Printed Gelâ€Based Bioink and Human Neural Stem Cells. Advanced Healthcare Materials, 2016, 5, 1429-1438.	3.9	303
16	Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nature Cell Biology, 2018, 20, 535-540.	4.6	302
17	A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Research, 2012, 22, 1609-1612.	5.7	287
18	Activation of the Imprinted Dlk1-Dio3 Region Correlates with Pluripotency Levels of Mouse Stem Cells. Journal of Biological Chemistry, 2010, 285, 19483-19490.	1.6	253

#	Article	IF	CITATIONS
19	On the origin of new genes in <i>Drosophila</i> . Genome Research, 2008, 18, 1446-1455.	2.4	240
20	CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology, 2019, 20, 132.	3.8	224
21	METTL3-mediated m6A modification is required for cerebellar development. PLoS Biology, 2018, 16, e2004880.	2.6	216
22	Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 2020, 180, 984-1001.e22.	13.5	206
23	Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Research, 2007, 17, 1008-1019.	5.7	191
24	SARS-CoV-2 detection with CRISPR diagnostics. Cell Discovery, 2020, 6, 34.	3.1	188
25	Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discovery, 2018, 4, 63.	3.1	183
26	TALEN-Mediated Gene Mutagenesis in Rhesus and Cynomolgus Monkeys. Cell Stem Cell, 2014, 14, 323-328.	5.2	180
27	Cloned ferrets produced by somatic cell nuclear transfer. Developmental Biology, 2006, 293, 439-448.	0.9	166
28	Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Research and Therapy, 2018, 9, 192.	2.4	157
29	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	13.7	149
30	Reconstitution of <i>UCP1</i> using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9474-E9482.	3.3	137
31	Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Research, 2012, 22, 208-218.	5.7	135
32	SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature, 2018, 560, 661-665.	13.7	128
33	Brief Report: Combined Chemical Treatment Enables <i>Oct4</i> -Induced Reprogramming from Mouse Embryonic Fibroblasts. Stem Cells, 2011, 29, 549-553.	1.4	121
34	CRISPR germline engineering—the community speaks. Nature Biotechnology, 2015, 33, 478-486.	9.4	110
35	Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells. Cell Stem Cell, 2015, 17, 116-124.	5.2	109
36	One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Scientific Reports, 2016, 6, 20620.	1.6	101

QI Zнои

#	Article	IF	CITATIONS
37	One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Research, 2015, 25, 258-261.	5.7	91
38	Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos. Cell, 2018, 175, 1887-1901.e18.	13.5	91
39	Generation and Characterization of Rabbit Embryonic Stem Cells. Stem Cells, 2007, 25, 481-489.	1.4	88
40	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	5.7	88
41	Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 404-414.	5.2	85
42	Piglets cloned from induced pluripotent stem cells. Cell Research, 2013, 23, 162-166.	5.7	84
43	Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Research, 2018, 28, 249-252.	5.7	84
44	Human Clinical-Grade Parthenogenetic ESC-Derived Dopaminergic NeuronsÂRecover Locomotive Defects of Nonhuman Primate Models ofÂParkinson's Disease. Stem Cell Reports, 2018, 11, 171-182.	2.3	83
45	Transgenic rhesus monkeys produced by gene transfer into early-cleavage–stage embryos using a simian immunodeficiency virus-based vector. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17663-17667.	3.3	81
46	ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy, 2016, 12, 2000-2008.	4.3	79
47	A genome-wide CRISPR-based screen identifies <i>KAT7</i> as a driver of cellular senescence. Science Translational Medicine, 2021, 13, .	5.8	79
48	Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development (Cambridge), 2015, 142, 3468-77.	1.2	75
49	Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biology, 2019, 20, 15.	3.8	74
50	Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metabolism, 2019, 29, 979-992.e4.	7.2	72
51	CRISPR/Cas9-mediated <i>Dax1</i> knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 2015, 24, 7255-7264.	1.4	71
52	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	5.7	67
53	Three-dimensional bio-printing. Science China Life Sciences, 2015, 58, 411-419.	2.3	66
54	Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics, 2012, 13, 109.	1.2	64

#	Article	IF	CITATIONS
55	Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discovery, 2018, 4, 50.	3.1	64
56	Genome editing in large animals: current status and future prospects. National Science Review, 2019, 6, 402-420.	4.6	63
57	Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Scientific Reports, 2015, 5, 13348.	1.6	62
58	Somatic Nucleus Reprogramming Is Significantly Improved by m-Carboxycinnamic Acid Bishydroxamide, a Histone Deacetylase Inhibitor. Journal of Biological Chemistry, 2010, 285, 31002-31010.	1.6	61
59	Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Research, 2020, 30, 794-809.	5.7	57
60	Protein Expression Profile of the Mouse Metaphase-II Oocyte. Journal of Proteome Research, 2008, 7, 4821-4830.	1.8	56
61	Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell, 2018, 23, 665-676.e4.	5.2	56
62	A novel long intergenic noncoding <scp>RNA</scp> indispensable for the cleavage of mouse two ell embryos. EMBO Reports, 2016, 17, 1452-1470.	2.0	55
63	High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death and Differentiation, 2017, 24, 1672-1680.	5.0	52
64	Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75, 4619-4628.	2.4	52
65	Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Research and Therapy, 2015, 6, 223.	2.4	49
66	Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein and Cell, 2021, 12, 695-716.	4.8	49
67	Viable Fertile Mice Generated from Fully Pluripotent iPS Cells Derived from Adult Somatic Cells. Stem Cell Reviews and Reports, 2010, 6, 390-397.	5.6	48
68	Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 2022, 32, 383-400.	5.7	48
69	Revisiting the Warnock rule. Nature Biotechnology, 2017, 35, 1029-1042.	9.4	47
70	Generation and Application of Mouse-Rat Allodiploid Embryonic Stem Cells. Cell, 2016, 164, 279-292.	13.5	46
71	Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Research, 2018, 28, 126-129.	5.7	46
72	Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell, 2020, 27, 315-325.e5.	5.2	45

#	Article	IF	CITATIONS
73	On the origin and evolution of new genes—a genomic and experimental perspective. Journal of Genetics and Genomics, 2008, 35, 639-648.	1.7	44
74	Cyclin B3 is required for metaphase to anaphase transition in oocyte meiosis I. Journal of Cell Biology, 2019, 218, 1553-1563.	2.3	43
75	Dissecting Signaling Pathways That Govern Self-renewal of Rabbit Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 35929-35940.	1.6	42
76	Report of the International Stem Cell Banking Initiative Workshop Activity: Current Hurdles and Progress in Seed-Stock Banking of Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2017, 6, 1956-1962.	1.6	42
77	Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Science China Life Sciences, 2016, 59, 950-957.	2.3	40
78	Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Research, 2016, 26, 135-138.	5.7	40
79	Accreditation of Biosafe Clinical-Grade Human Embryonic Stem Cells According to Chinese Regulations. Stem Cell Reports, 2017, 9, 366-380.	2.3	40
80	Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis. Blood, 2017, 130, 2161-2170.	0.6	40
81	Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Research, 2011, 21, 1634-1637.	5.7	39
82	Generation of Induced Pluripotent Stem Cells with High Efficiency from Human Umbilical Cord Blood Mononuclear Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 304-311.	3.0	39
83	Chromatin as a Regulative Architecture of the Early Developmental Functions of Mammalian Embryos after Fertilization or Nuclear Transfer. Cloning and Stem Cells, 2002, 4, 363-377.	2.6	38
84	Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Research, 2010, 20, 850-853.	5.7	38
85	Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Research, 2012, 22, 769-772.	5.7	38
86	Production of mice using iPS cells and tetraploid complementation. Nature Protocols, 2010, 5, 963-971.	5.5	37
87	A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review, 2021, 8, nwaa127.	4.6	37
88	Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biology, 2008, 9, R98.	13.9	36
89	Assessment of the developmental competence of human somatic cell nuclear transfer embryos by oocyte morphology classification. Human Reproduction, 2008, 24, 649-657.	0.4	36
90	TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Research, 2016, 26, 1048-1061.	5.7	36

#	Article	IF	CITATIONS
91	In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Research, 2020, 30, 244-255.	5.7	36
92	Parthenogenetic haploid embryonic stem cells produce fertile mice. Cell Research, 2013, 23, 1330-1333.	5.7	35
93	Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor—m-carboxycinnamic acid bishydroxamide (CBHA). Protein and Cell, 2014, 5, 382-393.	4.8	35
94	Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions. Protein and Cell, 2012, 3, 71-79.	4.8	33
95	Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening. Cell Reports, 2017, 20, 2227-2237.	2.9	33
96	Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nature Communications, 2019, 10, 928.	5.8	33
97	Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein and Cell, 2020, 11, 97-107.	4.8	33
98	A phase I clinical trial of human embryonic stem cellâ€derived retinal pigment epithelial cells for earlyâ€stage Stargardt macular degeneration: 5â€years' followâ€up. Cell Proliferation, 2021, 54, e13100.	2.4	33
99	Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Research, 2015, 25, 262-265.	5.7	32
100	Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Research, 2015, 14, 1-9.	0.3	32
101	Pilot study of large-scale production of mutant pigs by ENU mutagenesis. ELife, 2017, 6, .	2.8	32
102	Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4. Cell Reports, 2019, 29, 1986-2000.e8.	2.9	32
103	Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. Cell Stem Cell, 2020, 27, 482-497.e4.	5.2	32
104	Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental Cell, 2022, 57, 1347-1368.e12.	3.1	32
105	Human parthenogenetic embryonic stem cells: one potential resource for cell therapy. Science in China Series C: Life Sciences, 2009, 52, 599-602.	1.3	28
106	Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Human Genetics, 2017, 136, 1463-1475.	1.8	28
107	Efficient and rapid generation of induced pluripotent stem cells using an alternative culture medium. Cell Research, 2010, 20, 383-386.	5.7	27
108	Rosa26 Locus Supports Tissue-Specific Promoter Driving Transgene Expression Specifically in Pig. PLoS ONE, 2014, 9, e107945.	1.1	27

#	Article	IF	CITATIONS
109	Synthesis and biological activity of salinomycin-hydroxamic acid conjugates. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1624-1626.	1.0	27
110	Pluripotency Maintenance in Mouse Somatic Cell Nuclear Transfer Embryos and Its Improvement by Treatment with the Histone Deacetylase Inhibitor TSA. Cellular Reprogramming, 2011, 13, 47-56.	0.5	26
111	Tbx3 and Nr5α2 Play Important Roles in Pig Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 700-708.	5.6	26
112	Deciphering primate retinal aging at single-cell resolution. Protein and Cell, 2021, 12, 889-898.	4.8	26
113	Generation of GGTA1â^'/â^'β2Mâ^'/â^'CIITAâ^'/â^' Pigs Using CRISPR/Cas9 Technology to Alleviate Xenogeneic Immune Reactions. Transplantation, 2020, 104, 1566-1573.	0.5	26
114	Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin. Journal of Biological Chemistry, 2016, 291, 13560-13570.	1.6	25
115	Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: a systematic review. Stem Cell Research and Therapy, 2022, 13, 93.	2.4	25
116	Homologous Feeder Cells Support Undifferentiated Growth and Pluripotency in Monkey Embryonic Stem Cells. Stem Cells, 2005, 23, 1192-1199.	1.4	24
117	iPS cells generated without c-Myc have active Dlk1-Dio3 region and are capable of producing full-term mice through tetraploid complementation. Cell Research, 2011, 21, 550-553.	5.7	24
118	Lower genomic stability of induced pluripotent stem cells reflects increased nonâ€homologous end joining. Cancer Communications, 2018, 38, 1-22.	3.7	24
119	Impaired lipid metabolism by age-dependent DNA methylation alterations accelerates aging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4328-4336.	3.3	24
120	Intraâ€articular delivery of umbilical cordâ€derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model. International Journal of Rheumatic Diseases, 2020, 23, 778-787.	0.9	24
121	Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	24
122	Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Advances, 2016, 6, 41885-41890.	1.7	23
123	Tet3-Mediated DNA Demethylation Contributes to the Direct Conversion of Fibroblast to Functional Neuron. Cell Reports, 2016, 17, 2326-2339.	2.9	23
124	Therapeutic Effects of Human Umbilical Cord–Derived Mesenchymal Stem Cells on Canine Radiation-Induced Lung Injury. International Journal of Radiation Oncology Biology Physics, 2018, 102, 407-416.	0.4	23
125	A fully defined static suspension culture system for large-scale human embryonic stem cell production. Cell Death and Disease, 2018, 9, 892.	2.7	23
126	Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein and Cell, 2014, 5, 338-342.	4.8	22

#	Article	IF	CITATIONS
127	Structure–activity & structure–toxicity relationship study of salinomycin diastereoisomers and their benzoylated derivatives. Organic and Biomolecular Chemistry, 2016, 14, 2840-2845.	1.5	21
128	A 2-bp insertion (c.67_68insCC) in MC1R causes recessive white coat color in Bama miniature pigs. Journal of Genetics and Genomics, 2017, 44, 215-217.	1.7	20
129	Generation of qualified clinical-grade functional hepatocytes from human embryonic stem cells in chemically defined conditions. Cell Death and Disease, 2019, 10, 763.	2.7	20
130	Transplantable Neural Progenitor Populations Derived from Rhesus Monkey Embryonic Stem Cells. Stem Cells, 2005, 23, 1295-1303.	1.4	19
131	Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. Journal of Molecular Cell Biology, 2015, 7, 326-337.	1.5	19
132	Efficient Production of Fluorescent Transgenic Rats using the piggyBac Transposon. Scientific Reports, 2016, 6, 33225.	1.6	19
133	A modified culture method significantly improves the development of mouse somatic cell nuclear transfer embryos. Reproduction, 2009, 138, 301-308.	1.1	17
134	Generation of fertile offspring from Kitw/Kitwv mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Research, 2015, 25, 851-863.	5.7	17
135	Mitochondrially produced ATP affects stem cell pluripotency <i>via</i> Actl6aâ€mediated histone acetylation. FASEB Journal, 2018, 32, 1891-1902.	0.2	17
136	Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discovery, 2019, 5, 23.	3.1	16
137	Derivation of Mouse Haploid Trophoblast Stem Cells. Cell Reports, 2019, 26, 407-414.e5.	2.9	16
138	Balancing the welfare: the use of non-human primates in research. Trends in Genetics, 2014, 30, 476-478.	2.9	15
139	Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11974-11979.	3.3	15
140	Three-dimensional bioprinting speeds up smart regenerative medicine. National Science Review, 2016, 3, 331-344.	4.6	14
141	A non-invasive method to determine the pluripotent status of stem cells by culture medium microRNA expression detection. Scientific Reports, 2016, 6, 22380.	1.6	14
142	Design and synthesis of conformationally constrained salinomycin derivatives. European Journal of Medicinal Chemistry, 2017, 138, 353-356.	2.6	14
143	Rescuing ocular development in an anophthalmic pig by blastocyst complementation. EMBO Molecular Medicine, 2018, 10, .	3.3	14
144	Treating Bietti crystalline dystrophy in a high-fat diet-exacerbated murine model using gene therapy. Gene Therapy, 2020, 27, 370-382.	2.3	14

#	Article	IF	CITATIONS
145	HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death. Biochemical and Biophysical Research Communications, 2010, 397, 407-412.	1.0	13
146	Haploid embryonic stem cells serve as a new tool for mammalian genetic study. Stem Cell Research and Therapy, 2014, 5, 20.	2.4	13
147	International collaboration for global accessibility of COVID-19 vaccines. National Science Review, 2020, 7, 1269-1269.	4.6	13
148	Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discovery, 2015, 1, 15015.	3.1	12
149	Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line. Stem Cells and Development, 2015, 24, 2307-2316.	1.1	12
150	General requirements for stem cells. Cell Proliferation, 2020, 53, e12926.	2.4	11
151	Generation of Transgenic Rats through Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 27150-27158.	1.6	10
152	Stem Cell Bioprinting: Functional 3D Neural Mini‶issues from Printed Gelâ€Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016). Advanced Healthcare Materials, 2016, 5, 1428-1428.	3.9	10
153	A harlequin ichthyosis pig model with a novel ABCA12 mutation can be rescued by acitretin treatment. Journal of Molecular Cell Biology, 2019, 11, 1029-1041.	1.5	10
154	Rbm14 maintains the integrity of genomic DNA during early mouse embryogenesis via mediating alternative splicing. Cell Proliferation, 2020, 53, e12724.	2.4	10
155	Ethical and Policy Considerations for Human Embryo and Stem Cell Research in China. Cell Stem Cell, 2020, 27, 511-514.	5.2	10
156	Requirements for human embryonic stem cells. Cell Proliferation, 2020, 53, e12925.	2.4	10
157	Cellular models for disease exploring and drug screening. Protein and Cell, 2010, 1, 355-362.	4.8	9
158	Derivation of Germline Competent Rat Embryonic Stem Cells from DA Rats. Journal of Genetics and Genomics, 2012, 39, 603-606.	1.7	9
159	Rapidly generating knockout mice from H19-Igf2 engineered androgenetic haploid embryonic stem cells. Cell Discovery, 2015, 1, 15031.	3.1	9
160	Current advances in haploid stem cells. Protein and Cell, 2020, 11, 23-33.	4.8	9
161	Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein and Cell, 2022, 13, 615-622.	4.8	9
162	Generation of cell-type-specific gene mutations by expressing the sgRNA of the CRISPR system from the RNA polymerase II promoters. Protein and Cell, 2015, 6, 689-692.	4.8	8

#	Article	IF	CITATIONS
163	Efficient production of cynomolgus monkeys with a toolbox of enhanced assisted reproductive technologies. Scientific Reports, 2016, 6, 25888.	1.6	8
164	Induced Pluripotent Stem Cells Can Effectively Differentiate into Multiple Functional Lymphocyte Lineages In Vivo with Negligible Bias. Stem Cells and Development, 2016, 25, 462-471.	1.1	8
165	MeCP2 deficiency promotes cell reprogramming by stimulating IGF1/AKT/mTOR signaling and activating ribosomal protein-mediated cell cycle gene translation. Journal of Molecular Cell Biology, 2018, 10, 515-526.	1.5	8
166	Generation of clinical-grade functional cardiomyocytes from human embryonic stem cells in chemically defined conditions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 153-163.	1.3	8
167	Overexpression of Stella improves the efficiency of nuclear transfer reprogramming. Journal of Genetics and Genomics, 2017, 44, 363-366.	1.7	7
168	A novel porcine model reproduces human oculocutaneous albinism type II. Cell Discovery, 2019, 5, 48.	3.1	7
169	The effect of clinical-grade retinal pigment epithelium derived from human embryonic stem cells using different transplantation strategies. Protein and Cell, 2019, 10, 455-460.	4.8	7
170	Discovery and structure-activity relationship study of phthalimide-phenylpyridine conjugate as inhibitor of Wnt pathway. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 870-872.	1.0	7
171	Developing Standards to Support the Clinical Translation of Stem Cells. Stem Cells Translational Medicine, 2021, 10, S85-S95.	1.6	7
172	Pharmacological Perturbation of Mechanical Contractility Enables Robust Transdifferentiation of Human Fibroblasts into Neurons. Advanced Science, 2022, 9, e2104682.	5.6	7
173	Comparative genomic analysis links karyotypic evolution with genomic evolution in the Indian Muntjac (Muntiacus muntjak vaginalis). Chromosoma, 2006, 115, 427-436.	1.0	6
174	Generation of an LncRNA Gtl2-GFP Reporter for Rapid Assessment of Pluripotency in Mouse Induced Pluripotent Stem Cells. Journal of Genetics and Genomics, 2015, 42, 125-128.	1.7	6
175	Long noncoding RNA <i>lnc-NAP</i> sponges mmu-miR-139-5p to modulate <i>Nanog</i> functions in mouse ESCs and embryos. RNA Biology, 2021, 18, 875-887.	1.5	6
176	Diagnosis and Treatment Guidelines for Mesenchymal Stem Cell Therapy for Coronavirus Disease 2019 (Beijing, 2021). Infectious Diseases & Immunity, 2021, 1, 68-73.	0.2	5
177	A framework for the responsible reform of the 14-day rule in human embryo research. Protein and Cell, 2022, , 1.	4.8	5
178	Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. Journal of Immunology, 2022, 208, 420-428.	0.4	5
179	Neural progenitors derived from monkey embryonic stem cells in a simple monoculture system. Reproductive BioMedicine Online, 2009, 19, 426-433.	1.1	4
180	Co-participation of paternal and maternal genomes before the blastocyst stage is not required for full-term development of mouse embryos: FigureÂ1. Journal of Molecular Cell Biology, 2015, 7, 486-488.	1.5	4

#	Article	IF	CITATIONS
181	Individual blastomeres of 4- and 8-cell embryos have ability to develop into a full organism in mouse. Journal of Genetics and Genomics, 2018, 45, 677-680.	1.7	4
182	An exonic splicing enhancer mutation in <i>DUOX2</i> causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	4
183	Haploid pluripotent stem cells: twofold benefits with half the effort in genetic screening and reproduction. Current Opinion in Genetics and Development, 2020, 64, 6-12.	1.5	4
184	Transcriptome and DNA Methylation Profiles of Mouse Fetus and Placenta Generated by Round Spermatid Injection. Frontiers in Cell and Developmental Biology, 2021, 9, 632183.	1.8	4
185	Derivation and application of pluripotent stem cells for regenerative medicine. Science China Life Sciences, 2016, 59, 576-583.	2.3	3
186	Three dimensional collagen scaffolds promote iPSC induction with higher pluripotency. Protein and Cell, 2016, 7, 844-848.	4.8	3
187	Responsible governance of human germline genome editing in China. Biology of Reproduction, 2022, 107, 261-268.	1.2	3
188	Cloning efficiency following ES cell nuclear transfer is influenced by the methylation state of the donor nucleus altered by mutation of DNA methyltransferase 3a and 3b. Frontiers in Biology, 2010, 5, 439-444.	0.7	2
189	Derivation of androgenetic embryonic stem cells from m-carboxycinnamic acid bishydroxamide (CBHA) treated androgenetic embryos. Science Bulletin, 2013, 58, 2862-2868.	1.7	2
190	Generation of tetraploid complementation mice from embryonic stem cells cultured with chemical defined medium. Science Bulletin, 2014, 59, 2743-2748.	1.7	2
191	Generation of rat-mouse chimeras by introducing single cells of rat inner cell masses into mouse blastocysts. Journal of Genetics and Genomics, 2018, 45, 325-328.	1.7	2
192	Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts. Fundamental Research, 2022, 2, 37-47.	1.6	2
193	Epigenetic reprogramming: roads to pluripotency. Frontiers in Biology, 2010, 5, 8-11.	0.7	1
194	Therapeutic cloning by xenotransplanted oocytes, supplemented with species specific reprogramming factors. Medical Hypotheses, 2011, 76, 527-529.	0.8	1
195	RNA Guided Genome Editing in Mouse Germ-Line Stem Cells. Journal of Genetics and Genomics, 2014, 41, 409-411.	1.7	1
196	Derivation of Non-Integration Induced Pluripotent Stem Cells from Fibroblast of Severe Deafness Patients with GJB2 Mutation. Journal of Genetics and Genomics, 2015, 42, 455-458.	1.7	1
197	Efficient Derivation of Human Induced Pluripotent Stem Cells with a c-Myc-Free Non-Integrating Episomal Vector. Journal of Genetics and Genomics, 2016, 43, 161-164.	1.7	1
198	Synthetic chromosome evolves the yeast genome. Science China Life Sciences, 2019, 62, 708-709.	2.3	1

QI Zнои

#	Article	IF	CITATIONS
199	Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Proliferation, 2021, 54, e13090.	2.4	1
200	Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells. Frontiers in Biology, 2010, 5, 41-47.	0.7	0
201	Special issue for stem cells: a multi-perspective look at stem cells. Frontiers in Biology, 2010, 5, 379-379.	0.7	Ο
202	Induced Pluripotent Stem Cells: Current Progress and Future Perspectives. Genomics, Proteomics and Bioinformatics, 2013, 11, 257-258.	3.0	0
203	A single-cell snapshot of cell-fate decisions. Journal of Biological Chemistry, 2017, 292, 9855-9856.	1.6	0
204	Preface to special topic on stem cell research in China. National Science Review, 2017, 4, 522-522.	4.6	0
205	MAMU-AG TRANSCRIPTION IN PREIMPLANTATION EMBRYOS DERIVED FROM SCNT AND IVF IN RHESUS MONKEY. Biology of Reproduction, 2007, 77, 164-165.	1.2	0
206	Progress in modern reproductive biology research in China. Biology of Reproduction, 0, , .	1.2	0