
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529944/publications.pdf Version: 2024-02-01

Νίμας Ρ.Ιάνα

#	Article	IF	CITATIONS
1	Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies with Biopolymer. ACS Applied Materials & Interfaces, 2022, 14, 3199-3206.	4.0	10
2	Inhibiting Protein Aggregation by Small Molecule-Based Colloidal Nanoparticles. Accounts of Materials Research, 2022, 3, 54-66.	5.9	13
3	LRSAM1 E3 ubiquitin ligase promotes proteasomal clearance of E6-AP protein. Cellular Signalling, 2021, 77, 109836.	1.7	2
4	Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington's Disease. Molecular Neurobiology, 2021, 58, 3992-4006.	1.9	19
5	A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochemical Journal, 2021, 478, 3297-3317.	1.7	14
6	Receptor tyrosine kinase ROR1 ameliorates Aβ1–42 induced cytoskeletal instability and is regulated by the miR146a-NEAT1 nexus in Alzheimer's disease. Scientific Reports, 2021, 11, 19254.	1.6	6
7	Surface Chemistry- and Intracellular Trafficking-Dependent Autophagy Induction by Iron Oxide Nanoparticles. ACS Applied Bio Materials, 2020, 3, 5974-5983.	2.3	8
8	Small-Molecule-Functionalized Hyperbranched Polyglycerol Dendrimers for Inhibiting Protein Aggregation. Biomacromolecules, 2020, 21, 3270-3278.	2.6	20
9	Trehalose-Conjugated, Catechin-Loaded Polylactide Nanoparticles for Improved Neuroprotection against Intracellular Polyglutamine Aggregates. Biomacromolecules, 2020, 21, 1578-1586.	2.6	25
10	Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17383-17392.	3.3	82
11	Simvastatin Restores HDAC1/2 Activity and Improves Behavioral Deficits in Angelman Syndrome Model Mouse. Frontiers in Molecular Neuroscience, 2019, 12, 289.	1.4	11
12	Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS Applied Bio Materials, 2019, 2, 5298-5305.	2.3	24
13	Down-Regulation of miRNA-708 Promotes Aberrant Calcium Signaling by Targeting Neuronatin in a Mouse Model of Angelman Syndrome. Frontiers in Molecular Neuroscience, 2019, 12, 35.	1.4	14
14	LRSAM1 E3 ubiquitin ligase: molecular neurobiological perspectives linked with brain diseases. Cellular and Molecular Life Sciences, 2019, 76, 2093-2110.	2.4	8
15	Designed Polymer Micelle for Clearing Amyloid Protein Aggregates via Up-Regulated Autophagy. ACS Biomaterials Science and Engineering, 2019, 5, 390-401.	2.6	31
16	Inhibition of Protein Aggregation by Iron Oxide Nanoparticles Conjugated with Glutamine- and Proline-Based Osmolytes. ACS Applied Nano Materials, 2018, 1, 1094-1103.	2.4	32
17	Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death and Disease, 2018, 9, 201.	2.7	29
18	Azadiradione Restores Protein Quality Control and Ameliorates the Disease Pathogenesis in a Mouse Model of Huntington's Disease. Molecular Neurobiology, 2018, 55, 6337-6346.	1.9	22

#	Article	IF	CITATIONS
19	UBE3A and Its Link With Autism. Frontiers in Molecular Neuroscience, 2018, 11, 448.	1.4	60
20	Antiamyloidogenic Chemical/Biochemical-Based Designed Nanoparticle as Artificial Chaperone for Efficient Inhibition of Protein Aggregation. Biomacromolecules, 2018, 19, 1721-1731.	2.6	35
21	Topoisomerase 1 inhibitor topotecan delays the disease progression in a mouse model of Huntington's disease. Human Molecular Genetics, 2017, 26, ddw398.	1.4	6
22	Sugar-Terminated Nanoparticle Chaperones Are 10 ² –10 ⁵ Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity. ACS Applied Materials & Interfaces, 2017, 9, 10554-10566.	4.0	39
23	Poly(trehalose) Nanoparticles Prevent Amyloid Aggregation and Suppress Polyglutamine Aggregation in a Huntington's Disease Model Mouse. ACS Applied Materials & Interfaces, 2017, 9, 24126-24139.	4.0	109
24	Rescue of altered HDAC activity recovers behavioural abnormalities in a mouse model of Angelman syndrome. Neurobiology of Disease, 2017, 105, 99-108.	2.1	18
25	Cellular levels of growth factor receptor bound protein 2 (Grb2) and cytoskeleton stability are correlated in a neurodegenerative scenario. DMM Disease Models and Mechanisms, 2017, 10, 655-669.	1.2	13
26	Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Progress in Neurobiology, 2017, 159, 1-38.	2.8	27
27	Ube3a deficiency inhibits amyloid plaque formation in APPswe/PS1ÎΈ9 mouse model of Alzheimer's disease. Human Molecular Genetics, 2017, 26, 4042-4054.	1.4	28
28	Trehalose-Functionalized Gold Nanoparticle for Inhibiting Intracellular Protein Aggregation. Langmuir, 2017, 33, 13996-14003.	1.6	41
29	Environmental Enrichment Improves Behavioral Abnormalities in a Mouse Model of Angelman Syndrome. Molecular Neurobiology, 2017, 54, 5319-5326.	1.9	11
30	Ube3a deficiency inhibits amyloid plaque formation in APPswe/PS1δE9 mouse model of Alzheimer's disease. Canadian Journal of Biotechnology, 2017, 1, 177-177.	0.3	0
31	Azadiradione ameliorates polyglutamine expansion disease in <i>Drosophila</i> by potentiating DNA binding activity of heat shock factor 1. Oncotarget, 2016, 7, 78281-78296.	0.8	28
32	Efficient Inhibition of Protein Aggregation, Disintegration of Aggregates, and Lowering of Cytotoxicity by Green Tea Polyphenol-Based Self-Assembled Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 20309-20318.	4.0	101
33	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
34	Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome. Biochemical and Biophysical Research Communications, 2015, 464, 1196-1201.	1.0	13
35	The E3 ligase ube3a is required for learning in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2015, 462, 71-77.	1.0	14
36	Delayed Cell Cycle Progression in STHdh ^{Q111} /Hdh ^{Q111} Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432. MicroRNA (Shariqah, United Arab Emirates), 2015, 4, 86-100.	0.6	16

#	Article	IF	CITATIONS
37	Deficiency of Ube3a in Huntington's disease mice brain increases aggregate load and accelerates disease pathology. Human Molecular Genetics, 2014, 23, 6235-6245.	1.4	23
38	Reversal of reduced parvalbumin neurons in hippocampus and amygdala of Angelman syndrome model mice by chronic treatment of fluoxetine. Journal of Neurochemistry, 2014, 130, 444-454.	2.1	45
39	Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington's disease. Human Molecular Genetics, 2014, 23, 2737-2751.	1.4	44
40	Inhibition of Amyloid Fibril Growth and Dissolution of Amyloid Fibrils by Curcumin–Gold Nanoparticles. Chemistry - A European Journal, 2014, 20, 6184-6191.	1.7	139
41	Inhibition of Amyloid Fibril Growth by Nanoparticle Coated with Histidine-Based Polymer. Journal of Physical Chemistry C, 2014, 118, 21630-21638.	1.5	67
42	Neuronatin-mediated Aberrant Calcium Signaling and Endoplasmic Reticulum Stress Underlie Neuropathology in Lafora Disease. Journal of Biological Chemistry, 2013, 288, 9482-9490.	1.6	45
43	MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh/Hdh cells. Biochemical and Biophysical Research Communications, 2013, 437, 217-224.	1.0	38
44	E6-AP association promotes SOD1 aggresomes degradation and suppresses toxicity. Neurobiology of Aging, 2013, 34, 1310.e11-1310.e23.	1.5	30
45	Misfolded Proteins Recognition Strategies of E3 Ubiquitin Ligases and Neurodegenerative Diseases. Molecular Neurobiology, 2013, 47, 302-312.	1.9	28
46	Grb2 Is Regulated by Foxd3 and Has Roles in Preventing Accumulation and Aggregation of Mutant Huntingtin. PLoS ONE, 2013, 8, e76792.	1.1	14
47	Dysfunction of the Ubiquitin Ligase Ube3a May Be Associated with Synaptic Pathophysiology in a Mouse Model of Huntington Disease. Journal of Biological Chemistry, 2012, 287, 29949-29957.	1.6	30
48	Dysregulation of core components of SCF complex in poly-glutamine disorders. Cell Death and Disease, 2012, 3, e428-e428.	2.7	24
49	Malin Regulates Wnt Signaling Pathway through Degradation of Dishevelled2. Journal of Biological Chemistry, 2012, 287, 6830-6839.	1.6	43
50	Understanding the Pathogenesis of Angelman Syndrome through Animal Models. Neural Plasticity, 2012, 2012, 1-10.	1.0	42
51	Protein homeostasis and aging: Role of ubiquitin protein ligases. Neurochemistry International, 2012, 60, 443-447.	1.9	49
52	Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Human Molecular Genetics, 2012, 21, 1824-1834.	1.4	54
53	Regulation of miR-146a by RelA/NFkB and p53 in STHdhQ111/HdhQ111 Cells, a Cell Model of Huntington's Disease. PLoS ONE, 2011, 6, e23837.	1.1	87
54	Lafora disease ubiquitin ligase malin promotes proteasomal degradation of neuronatin and regulates glycogen synthesis. Neurobiology of Disease, 2011, 44, 133-141.	2.1	37

#	Article	IF	CITATIONS
55	Role of the ubiquitin–proteasome system and autophagy in polyglutamine neurodegenerative diseases. Future Neurology, 2010, 5, 105-112.	0.9	2
56	Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiology of Disease, 2010, 40, 586-592.	2.1	62
57	Capsaicin induces apoptosis through ubiquitin–proteasome system dysfunction. Journal of Cellular Biochemistry, 2010, 109, 933-942.	1.2	31
58	Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Human Molecular Genetics, 2010, 19, 4726-4734.	1.4	59
59	Co-chaperone CHIP Stabilizes Aggregate-prone Malin, a Ubiquitin Ligase Mutated in Lafora Disease. Journal of Biological Chemistry, 2010, 285, 1404-1413.	1.6	36
60	The Ubiquitin Ligase E6-AP Is Induced and Recruited to Aggresomes in Response to Proteasome Inhibition and May Be Involved in the Ubiquitination of Hsp70-bound Misfolded Proteins. Journal of Biological Chemistry, 2009, 284, 10537-10545.	1.6	85
61	UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiology of Disease, 2009, 36, 26-34.	2.1	75
62	Induction of chemokines, MCPâ€1, and KC in the mutant huntingtin expressing neuronal cells because of proteasomal dysfunction. Journal of Neurochemistry, 2009, 108, 787-795.	2.1	21
63	The ubiquitin ligase E6â€AP promotes degradation of αâ€synuclein. Journal of Neurochemistry, 2009, 110, 1955-1964.	2.1	55
64	Role of Ubiquitin Protein Ligases in the Pathogenesis of Polyglutamine Diseases. Neurochemical Research, 2008, 33, 945-951.	1.6	4
65	Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cellular and Molecular Life Sciences, 2008, 65, 656-666.	2.4	42
66	NSAIDs and apoptosis. Cellular and Molecular Life Sciences, 2008, 65, 1295-1301.	2.4	130
67	E6-AP Promotes Misfolded Polyglutamine Proteins for Proteasomal Degradation and Suppresses Polyglutamine Protein Aggregation and Toxicity. Journal of Biological Chemistry, 2008, 283, 7648-7656.	1.6	80
68	The co-chaperone CHIP is induced in various stresses and confers protection to cells. Biochemical and Biophysical Research Communications, 2007, 357, 761-765.	1.0	29
69	Aspirin Induces Apoptosis through the Inhibition of Proteasome Function. Journal of Biological Chemistry, 2006, 281, 29228-29235.	1.6	112
70	Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochemical and Biophysical Research Communications, 2006, 342, 184-190.	1.0	107
71	Curcumin enhances the polyglutamine-expanded truncated N-terminal huntingtin-induced cell death by promoting proteasomal malfunction. Biochemical and Biophysical Research Communications, 2006, 342, 1323-1328.	1.0	30
72	Curcumin induces stress response, neurite outgrowth and prevent nf-Î⁰b activation by inhibiting the proteasome function. Neurotoxicity Research, 2006, 9, 29-37.	1.3	60

#	Article	IF	CITATIONS
73	Expression of Expanded Polyglutamine Proteins Suppresses the Activation of Transcription Factor NFI®B. Journal of Biological Chemistry, 2006, 281, 37017-37024.	1.6	16
74	Decreased expression of hypothalamic neuropeptides in Huntington disease transgenic mice with expanded polyglutamine‣GFP fluorescent aggregates. Journal of Neurochemistry, 2005, 93, 641-653.	2.1	73
75	Co-chaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes. Journal of Biological Chemistry, 2005, 280, 11635-11640.	1.6	283
76	BAG-1 associates with the polyglutamine-expanded huntingtin aggregates. Neuroscience Letters, 2005, 378, 171-175.	1.0	30
77	Assessment of Impaired Proteasomal Function in a Cellular Model of Polyglutamine Diseases. , 2004, 277, 287-292.		0
78	Inhibition of Proteasomal Function by Curcumin Induces Apoptosis through Mitochondrial Pathway. Journal of Biological Chemistry, 2004, 279, 11680-11685.	1.6	209
79	Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. Journal of Neurochemistry, 2004, 91, 57-68.	2.1	167
80	Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine, 2004, 10, 148-154.	15.2	701
81	Misfolding promotes the ubiquitination of polyglutamine-expanded ataxin-3, the defective gene product in SCA3/MJD. Neurotoxicity Research, 2004, 6, 523-533.	1.3	19
82	Pro-apoptotic protein kinase Cδ is associated with intranuclear inclusions in a transgenic model of Huntington's disease. Journal of Neurochemistry, 2003, 87, 395-406.	2.1	20
83	Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway. Journal of Chemical Neuroanatomy, 2003, 26, 95-101.	1.0	55
84	Comparative Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on MCF-7, RL95-2, and LNCaP Cells: Role of Target Steroid Hormones in Cellular Responsiveness to CYP1A1 Induction. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 4, 174-180.	1.7	38
85	Abundant secretory lipocalins displaying male and lactation-specific expression in adult hamster submandibular gland. cDNA cloning and sex hormone-regulated repression. FEBS Journal, 1999, 266, 467-476.	0.2	23
86	Hormonal effects on hamster lacrimal gland female-specific major 20 kDa secretory protein and its immunological similarity with submandibular gland major male-specific proteins. Journal of Steroid Biochemistry and Molecular Biology, 1999, 70, 151-158.	1.2	17
87	Role of Estradiol Receptor-α in Differential Expression of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Inducible Genes in the RL95-2 and KLE Human Endometrial Cancer Cell Lines. Archives of Biochemistry and Biophysics, 1999, 368, 31-39.	1.4	31
88	Cross-Talk between 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Testosterone Signal Transduction Pathways in LNCaP Prostate Cancer Cells. Biochemical and Biophysical Research Communications, 1999, 256, 462-468.	1.0	117
89	Strain Differences in Cytochrome P4501A1 Gene Expression Caused by 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Rat Liver: Role of the Aryl Hydrocarbon Receptor and Its Nuclear Translocator. Biochemical and Biophysical Research Communications, 1998, 248, 554-558.	1.0	34
90	Thyroid hormone induces a 52 kDa soluble protein in goat testis Leydig cell which stimulates androgen release. BBA - Proteins and Proteomics, 1996, 1292, 209-214.	2.1	20