
Xianqing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. International Journal of Nanomedicine, 2015, 10, 1463.	3.3	197
2	Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. International Journal of Nanomedicine, 2016, Volume 11, 5257-5276.	3.3	176
3	Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. International Journal of Nanomedicine, 2017, Volume 12, 809-825.	3.3	152
4	Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. Journal of Hazardous Materials, 2014, 270, 176-186.	6.5	148
5	Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. International Journal of Nanomedicine, 2014, 9, 5131.	3.3	145
6	Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Particle and Fibre Toxicology, 2014, 11, 50.	2.8	110
7	Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environmental Pollution, 2018, 236, 926-936.	3.7	107
8	PM2.5 induces male reproductive toxicity via mitochondrial dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway. Science of the Total Environment, 2018, 634, 1435-1444.	3.9	95
9	Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Science of the Total Environment, 2018, 618, 48-59.	3.9	84
10	Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Chemosphere, 2019, 223, 675-685.	4.2	81
11	Novel brominated flame retardants in food composites and human milk from the Chinese Total Diet Study in 2011: Concentrations and a dietary exposure assessment. Environment International, 2016, 96, 82-90.	4.8	77
12	Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats. Science of the Total Environment, 2020, 705, 135783.	3.9	75
13	A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Ecotoxicology and Environmental Safety, 2019, 174, 224-235.	2.9	73
14	Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Science of the Total Environment, 2018, 631-632, 570-579.	3.9	67
15	Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Environmental Pollution, 2017, 229, 539-547.	3.7	64
16	Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy, 2018, 14, 1185-1200.	4.3	64
17	Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. Chemosphere, 2018, 210, 183-192.	4.2	63
18	BDE-209 and DBDPE induce male reproductive toxicity through telomere-related cell senescence and apoptosis in SD rat. Environment International, 2021, 146, 106307.	4.8	55

#	Article	IF	CITATIONS
19	Fine particle matter disrupts the blood–testis barrier by activating TGFâ€Î²3/p38 MAPK pathway and decreasing testosterone secretion in rat. Environmental Toxicology, 2018, 33, 711-719.	2.1	54
20	A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Science of the Total Environment, 2017, 599-600, 237-245.	3.9	50
21	Fine particulate matters induce apoptosis via the ATM/P53/CDK2 and mitochondria apoptosis pathway triggered by oxidative stress in rat and GC-2spd cell. Ecotoxicology and Environmental Safety, 2019, 180, 280-287.	2.9	45
22	Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation. International Journal of Nanomedicine, 2016, Volume 11, 6217-6228.	3.3	41
23	Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells <i>via</i> P53 signaling. Nanotoxicology, 2017, 11, 1176-1194.	1.6	41
24	Comprehensive understanding of PM2.5 on gene and microRNA expression patterns in zebrafish (Danio) Tj ETQo	10 9 9 rgB ⁻	[/9gerlock 10
25	Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environmental Science and Pollution Research, 2018, 25, 3423-3434.	2.7	38
26	Endosulfan induces autophagy and endothelial dysfunction via theÂAMPK/mTOR signaling pathway triggered by oxidative stress. Environmental Pollution, 2017, 220, 843-852.	3.7	35
27	BDE-209 induces male reproductive toxicity via cell cycle arrest and apoptosis mediated by DNA damage response signaling pathways. Environmental Pollution, 2019, 255, 113097.	3.7	34
28	Silica nanoparticles induce start inhibition of meiosis and cell cycle arrest via down-regulating meiotic relevant factors. Toxicology Research, 2016, 5, 1453-1464.	0.9	32
29	Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. Journal of Hazardous Materials, 2020, 384, 121361.	6.5	32
30	Determination of novel brominated flame retardants and polybrominated diphenyl ethers in serum using gas chromatography–mass spectrometry with two simplified sample preparation procedures. Analytical and Bioanalytical Chemistry, 2016, 408, 7835-7844.	1.9	30
31	Developmental toxicity of CdTe QDs in zebrafish embryos and larvae. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	26
32	Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells. Environmental Pollution, 2019, 255, 113172.	3.7	26
33	Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice. International Journal of Nanomedicine, 2016, 11, 2251.	3.3	25
34	Decabromodiphenyl ether disturbs hepatic glycolipid metabolism by regulating the PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and LO2 cells. Science of the Total Environment, 2021, 763, 142936.	3.9	24
35	Silica nanoparticles induce abnormal mitosis and apoptosis via PKC-δÂmediated negative signaling pathway in GC-2â€⁻cells of mice. Chemosphere, 2018, 208, 942-950.	4.2	22
36	The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. Chemosphere, 2019, 222, 849-855.	4.2	22

XIANQING ZHOU

#	Article	IF	CITATIONS
37	Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solidâ \in phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC. Journal of Separation Science, 2017, 40, 709-716.	1.3	21
38	Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice. Environmental Pollution, 2020, 265, 114974.	3.7	20
39	Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes. Journal of Hazardous Materials, 2022, 434, 128820.	6.5	20
40	Determination of polybrominated diphenyl ethers and novel brominated flame retardants in human serum by gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1099, 64-72.	1.2	19
41	Silica nanoparticles induce cardiac injury and dysfunction via ROS/Ca2+/CaMKII signaling. Science of the Total Environment, 2022, 837, 155733.	3.9	19
42	Silica nanoparticles induce spermatocyte cell apoptosis through microRNA-2861 targeting death receptor pathway. Chemosphere, 2019, 228, 709-720.	4.2	18
43	Oxidative stress and endoplasmic reticulum stress contributed to hepatotoxicity of decabromodiphenyl ethane (DBDPE) in L-02 cells. Chemosphere, 2022, 286, 131550.	4.2	18
44	Endosulfan activates the extrinsic coagulation pathway by inducing endothelial cell injury in rats. Environmental Science and Pollution Research, 2015, 22, 15722-15730.	2.7	17
45	Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. Environmental Science and Pollution Research, 2017, 24, 215-225.	2.7	17
46	NLRP3 inflammasome-mediated endothelial cells pyroptosis is involved in decabromodiphenyl ethane-induced vascular endothelial injury. Chemosphere, 2021, 267, 128867.	4.2	16
47	DNA methylation changes induced by BDE-209 are related to DNA damage response and germ cell development in GC-2spd. Journal of Environmental Sciences, 2021, 109, 161-170.	3.2	16
48	Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells. Environmental Pollution, 2017, 221, 26-36.	3.7	15
49	Decabromodiphenyl ether induces male reproductive toxicity by activating mitochondrial apoptotic pathway through glycolipid metabolism dysbiosis. Chemosphere, 2021, 285, 131512.	4.2	15
50	Loss of Nobox prevents ovarian differentiation from juvenile ovaries in zebrafish. Biology of Reproduction, 2022, 106, 1254-1266.	1.2	13
51	Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage and DNA damage response signaling pathways. Science of the Total Environment, 2017, 589, 97-106.	3.9	12
52	Metallothionein prevents doxorubicin cardiac toxicity by indirectly regulating the uncoupling proteins 2. Food and Chemical Toxicology, 2017, 110, 204-213.	1.8	12
53	Endosulfan induces cardiotoxicity through apoptosis via unbalance of pro-survival and mitochondrial-mediated apoptotic pathways. Science of the Total Environment, 2020, 727, 138790.	3.9	11
54	Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environmental Pollution, 2021, 284, 117446.	3.7	10

XIANQING ZHOU

#	Article	IF	CITATIONS
55	Silica nanoparticles inducing the apoptosis via microRNA-450b-3p targeting MTCH2 in mice and spermatocyte cell. Environmental Pollution, 2021, 277, 116771.	3.7	8
56	Maternal exposure to PM2.5 induces the testicular cell apoptosis in offspring triggered by the UPR-mediated JNK pathway. Toxicology Research, 2022, 11, 226-234.	0.9	8
57	The effect of SiNPs on DNA methylation of genome in mouse spermatocytes. Environmental Science and Pollution Research, 2021, 28, 43684-43697.	2.7	7
58	Maternal exposure to fine particle matters cause autophagy via UPR-mediated PI3K-mTOR pathway in testicular tissue of adult male mice in offspring. Ecotoxicology and Environmental Safety, 2020, 189, 109943.	2.9	6
59	Silica nanoparticles induce unfolded protein reaction mediated apoptosis in spermatocyte cells. Toxicology Research, 2020, 9, 454-460.	0.9	5
60	Fat mass and obesity-associated gene (FTO) hypermethylation induced by decabromodiphenyl ethane causing cardiac dysfunction via glucolipid metabolism disorder. Ecotoxicology and Environmental Safety, 2022, 237, 113534.	2.9	5
61	Nanosilica induced dose-dependent cytotoxicity and cell type-dependent multinucleation in HepG2 and L-02 cells. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
62	Maternal exposure to PM2.5 disrupting offspring spermatogenesis through induced sertoli cells apoptosis via inhibin B hypermethylation in mice. Ecotoxicology and Environmental Safety, 2022, 241, 113760.	2.9	4
63	The alterations of miRNA and mRNA expression profile and their integration analysis induced by silica nanoparticles in spermatocyte cells. NanoImpact, 2021, 23, 100348.	2.4	3
64	Decabromodiphenyl ether-induced PRKACA hypermethylation contributed to glycolipid metabolism disorder via regulating PKA/AMPK pathway in rat and L-02 cells. Environmental Toxicology and Pharmacology, 2022, 90, 103808.	2.0	3