Zhinan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529659/publications.pdf

Version: 2024-02-01

76326 106344 8,783 62 40 65 citations h-index g-index papers 67 67 67 8339 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High-performance polarization-sensitive photodetectors on two-dimensional $\langle i \rangle \hat{l}^2 \langle i \rangle$ -InSe. National Science Review, 2022, 9, nwab098.	9.5	75
2	Photodetectors Based on MoS ₂ /MAPbBr ₃ van der Waals Heterojunction. IEEE Electron Device Letters, 2022, 43, 414-417.	3.9	7
3	Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications. Journal of Materials Chemistry C, 2021, 9, 508-516.	5 . 5	17
4	Graphene/MoS ₂ /Graphene Vertical Heterostructureâ€Based Broadband Photodetector with High Performance. Advanced Materials Interfaces, 2021, 8, 2001730.	3.7	65
5	Recent advances in anisotropic two-dimensional materials and device applications. Nano Research, 2021, 14, 897-919.	10.4	69
6	Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. Advanced Science, 2021, 8, 2002284.	11.2	47
7	Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure Based Photodetector. Advanced Science, 2021, 8, e2100503.	11.2	28
8	Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction. Nano-Micro Letters, 2021, 13, 172.	27.0	20
9	Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. IScience, 2021, 24, 103116.	4.1	30
10	Highly Efficient Silicon Photonic Microheater Based on Black Arsenic–Phosphorus. Advanced Optical Materials, 2020, 8, 1901526.	7.3	26
11	Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12, 3535-3559.	5.6	318
12	Anisotropic Plasmonic Nanostructure Induced Polarization Photoresponse for MoS ₂ â€Based Photodetector. Advanced Materials Interfaces, 2020, 7, 1902179.	3.7	41
13	Deepâ€Learningâ€Enabled MXeneâ€Based Artificial Throat: Toward Sound Detection and Speech Recognition. Advanced Materials Technologies, 2020, 5, 2000262.	5.8	45
14	Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. Journal of Materials Chemistry A, 2020, 8, 4647-4676.	10.3	39
15	Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 2020, 9, 2459-2466.	6.0	24
16	Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020, 8, 5421-5441.	10.3	93
17	Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. Journal of Materials Chemistry A, 2020, 8, 8813-8830.	10.3	185
18	Two-Dimensional Tellurium: Progress, Challenges, and Prospects. Nano-Micro Letters, 2020, 12, 99.	27.0	139

#	Article	IF	Citations
19	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coordination Chemistry Reviews, 2020, 418, 213333.	18.8	23
20	2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser and Photonics Reviews, 2019, 13, 1900123.	8.7	76
21	<i>In situ</i> preparation of a CsPbBr ₃ /black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale, 2019, 11, 16852-16859.	5.6	55
22	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	14.9	113
23	Electronic and Optical Properties of Two-Dimensional Tellurene: From First-Principles Calculations. Nanomaterials, 2019, 9, 1075.	4.1	40
24	Monolayer \hat{l}^2 -tellurene: a promising p-type thermoelectric material <i>via</i> first-principles calculations. Nanoscale, 2019, 11, 18116-18123.	5.6	36
25	Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nature Communications, 2019, 10, 4062.	12.8	37
26	Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435.	5.6	87
27	Unveiling the Stimulated Robust Carrier Lifetime of Surfaceâ€Bound Excitons and Their Photoresponse in InSe. Advanced Materials Interfaces, 2019, 6, 1900171.	3.7	18
28	Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: opportunities and challenges. Journal of Materials Chemistry A, 2019, 7, 25227-25246.	10.3	44
29	Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 4278-4287.	8.0	105
30	Two Dimensional \hat{l}^2 -InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties. Nanomaterials, 2019, 9, 82.	4.1	43
31	Goldâ€patterned microarray chips for ultrasensitive surfaceâ€enhanced Raman scattering detection of ultratrace samples. Journal of Raman Spectroscopy, 2019, 50, 26-33.	2.5	9
32	Nonlayered 2D Materials: Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability (Adv.) Tj ETQq0	0 0 14.g/BT/	Oværlock 10
33	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705833.	14.9	348
34	Highâ€Performance Photoâ€Electrochemical Photodetector Based on Liquidâ€Exfoliated Fewâ€Layered InSe Nanosheets with Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705237.	14.9	258
35	Few‣ayer Tin Sulfide: A Promising Blackâ€Phosphorusâ€Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in Allâ€Optical Switching and Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1700985.	7.3	212
36	Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser. Optics Communications, 2018, 406, 158-162.	2.1	44

#	Article	IF	Citations
37	Perovskite CsPbX ₃ : A Promising Nonlinear Optical Material and Its Applications for Ambient Allâ€Optical Switching with Enhanced Stability. Advanced Optical Materials, 2018, 6, 1800400.	7.3	90
38	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. Journal of Materials Chemistry C, 2017, 5, 3007-3013.	5.5	150
39	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	11.2	285
40	Efficient Enrichment and Self-Assembly of Hybrid Nanoparticles into Removable and Magnetic SERS Substrates for Sensitive Detection of Environmental Pollutants. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7472-7480.	8.0	84
41	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. ACS Photonics, 2017, 4, 1466-1476.	6.6	173
42	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017, 13, 1702739.	10.0	150
43	Metalâ€Ionâ€Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Advanced Materials, 2017, 29, 1703811.	21.0	431
44	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	12.2	296
45	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Materials, 2017, 10, 210.	2.9	56
46	Dual-wavelength Q-switched Er:SrF_2 laser with a black phosphorus absorber in the mid-infrared region. Optics Express, 2016, 24, 30289.	3.4	88
47	Metabolizable Ultrathin Bi ₂ Se ₃ Nanosheets in Imagingâ€Guided Photothermal Therapy. Small, 2016, 12, 4136-4145.	10.0	203
48	Bismuth telluride topological insulator nanosheet saturable absorbers for qâ€switched modeâ€locked Tm:ZBLAN waveguide lasers. Annalen Der Physik, 2016, 528, 543-550.	2.4	54
49	Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Scientific Reports, 2016, 6, 30361.	3.3	242
50	Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation. Scientific Reports, 2016, 6, 21799.	3.3	22
51	Rücktitelbild: Surface Coordination of Black Phosphorus for Robust Air and Water Stability (Angew.) Tj ETQq1 1	. 0.78431 <i>4</i>	4 rgBT /Ove
52	Photothermal Therapy: Metabolizable Ultrathin Bi2Se3Nanosheets in Imaging-Guided Photothermal Therapy (Small 30/2016). Small, 2016, 12, 4158-4158.	10.0	4
53	Quantum Dots: Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots (Advanced Optical Materials 8/2016). Advanced Optical Materials, 2016, 4, 1222-1222.	7.3	7
54	Drawing-fabrication of multifarious nanoplasmonic platform on PLLA paper for optimized SERS performance. Journal of Raman Spectroscopy, 2016, 47, 687-691.	2.5	8

#	Article	lF	CITATIONS
55	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Advanced Optical Materials, 2016, 4, 1223-1229.	7.3	326
56	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie, 2016, 128, 5087-5091.	2.0	116
57	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie - International Edition, 2016, 55, 5003-5007.	13.8	479
58	Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Optics Express, 2016, 24, 2858.	3.4	41
59	Phosphorene: From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics (Adv. Funct. Mater. 45/2015). Advanced Functional Materials, 2015, 25, 7100-7100.	14.9	6
60	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-11530.	13.8	906
61	From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Advanced Functional Materials, 2015, 25, 6996-7002.	14.9	862
62	PLLA Nanofibrous Paper-Based Plasmonic Substrate with Tailored Hydrophilicity for Focusing SERS Detection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5391-5399.	8.0	109