Ephraim Suhir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529599/publications.pdf

Version: 2024-02-01

		201385	168136
191	3,927	27	53
papers	citations	h-index	g-index
194	194	194	1234
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Predictive modeling sheds useful light on burn-in testing (BIT): Brief review and recent extension. Microelectronics Reliability, 2022, 128, 114371.	0.9	4
2	Quantifying surgeon's performance: probabilistic approach. British Journal of Surgery, 2022, , .	0.1	2
3	Avoiding collision in automated driving situation. Theoretical Issues in Ergonomics Science, 2021, 22, 251-260.	1.0	7
4	Astronaut's performance vs. his/hers human-capacity-factor and state-of-health: Application of double-exponential-probability-distribution function. Acta Astronautica, 2021, 178, 250-256.	1.7	10
5	Some Major Human Issues in Aerospace Engineering: Review and Extension. Lecture Notes in Networks and Systems, 2021, , 169-177.	0.5	3
6	Physical Properties and Mechanical Behavior of Carbon Nano-tubes (CNTs) and Carbon Nano-fibers (CNFs) as Thermal Interface Materials (TIMs) for High-Power Integrated Circuit (IC) Packages: Review and Extension., 2021,, 137-156.		0
7	When Instrumentation and Human Performance Contribute Jointly to the Outcome of a Human-System-Integration (HSI) Mission: Brief Review. Lecture Notes in Networks and Systems, 2021, , 409-413.	0.5	2
8	Figure-of-Merit for a Long-Term Survivorship of a Species Determined from the Short-Term Mortality Rate of Its Individual Organisms. Biophysical Reviews and Letters, 2021, 16, 111-123.	0.9	2
9	Using yield to predict long-term reliability of integrated circuits: Application of Boltzmann-Arrhenius-Zhurkov model. Solid-State Electronics, 2020, 164, 107746.	0.8	9
10	Survivability of species in different habitats: Application of multi-parametric Boltzmann-Arrhenius-Zhurkov equation. Acta Astronautica, 2020, 175, 249-253.	1.7	4
11	Head-on railway obstruction: a probabilistic model. Theoretical Issues in Ergonomics Science, 2020, , 1-7.	1.0	5
12	Towards Probabilistic Analysis of Human-System Integration in Automated Driving. Advances in Intelligent Systems and Computing, 2020, , 9-14.	0.5	8
13	Mechanical Behavior of Optical Fibers and Interconnects: Application of Analytical Modelling. , 2020, , 1528-1532.		O
14	Application of Analytical Modeling in the Design for Reliability of Electronic Packages and Systems. , 2020, , $110\text{-}119$.		0
15	Design for Reliability of Electronic Materials and Systems. , 2020, , 610-620.		O
16	Probabilistic reliability-physics models in aerospace human-in-the-loop (HITL) problems., 2019,, 499-516.		4
17	Degraded situation awareness risk assessment in the aerospace domain. , 2019, , .		3
18	Physical Design for Reliability of Solder Joint Interconnections for Application in Aerospace Electronics., 2019,,.		2

#	Article	IF	Citations
19	Failure-Oriented-Accelerated-Testing and Its Role in Making a Device into a Product. , 2019, , .		1
20	To Burn-In, or Not to Burn-In: That's the Question. Aerospace, 2019, 6, 29.	1.1	11
21	Analytical thermal stress modeling in electronics and photonics engineering: Application of the concept of interfacial compliance. Journal of Thermal Stresses, 2019, 42, 29-48.	1.1	9
22	Short note - assessment of the required human capacity factor using flight simulator as an appropriate accelerated test vehicle. International Journal of Human Factors Modelling and Simulation, 2019, 7, 71.	0.1	12
23	Short note - adequate trust, human-capacity-factor, probability-distribution-function of human non-failure and its entropy. International Journal of Human Factors Modelling and Simulation, 2019, 7, 75.	0.1	12
24	Electron Device Subjected to Temperature Cycling: Predicted Time-to-Failure. Journal of Electronic Materials, 2019, 48, 778-779.	1.0	6
25	Short note - assessment of the required human capacity factor using flight simulator as an appropriate accelerated test vehicle. International Journal of Human Factors Modelling and Simulation, 2019, 7, 71.	0.1	3
26	Short note - adequate trust, human-capacity-factor, probability-distribution-function of human non-failure and its entropy. International Journal of Human Factors Modelling and Simulation, 2019, 7, 75.	0.1	3
27	Design for ReliabilityÂof Electronic Materials and Systems. , 2019, , 1-10.		2
28	Mechanical Behavior of Optical Fibers and Interconnects: Application of Analytical Modelling. , 2019, , 1-5.		0
29	Application of Analytical Modeling in the Design for Reliability of Electronic Packages and Systems. , 2019, , 1-10.		1
30	Solder Joint Interconnections in Automotive Electronics: Design-for-Reliability and Accelerated Testing. International Symposium on Microelectronics, 2019, 2019, 000063-000077.	0.3	1
31	Aerospace electronics reliability prediction: application of two advanced probabilistic techniques. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 824-839.	0.9	1
32	Analytical thermal stress model for a typical flip-chip (FC) package design. Journal of Materials Science: Materials in Electronics, 2018, 29, 2676-2688.	1.1	5
33	What could and should be done differently: failure-oriented-accelerated-testing (FOAT) and its role in making an aerospace electronics device into a product. Journal of Materials Science: Materials in Electronics, 2018, 29, 2939-2948.	1.1	12
34	Quantifying the roles of human error and his/her state-of-health: use of the double-exponential-probability-distribution-function. International Journal of Human Factors Modelling and Simulation, 2018, 6, 140.	0.1	3
35	Flip-Chip (FC) and Fine-Pitch-Ball-Grid-Array (FPBGA) Underfills for Application in Aerospace Electronics—Brief Review. Aerospace, 2018, 5, 74.	1.1	9
36	Aerospace Mission Outcome: Predictive Modeling. Aerospace, 2018, 5, 56.	1.1	4

#	Article	IF	CITATIONS
37	Quantifying the roles of human error and his/her state-of-health: use of the double-exponential-probability-distribution-function. International Journal of Human Factors Modelling and Simulation, 2018, 6, 140.	0.1	2
38	Dynamic response of electronic materials to impact loading: review. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97, 699-717.	0.9	2
39	How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?. Journal of Electronic Materials, 2017, 46, 1747-1753.	1.0	3
40	Assessed interfacial strength and elastic moduli of the bonding material from shear-off test data. Journal of Materials Science: Materials in Electronics, 2017, 28, 6794-6799.	1.1	2
41	Static fatigue lifetime of optical fibers assessed using Boltzmann–Arrhenius–Zhurkov (BAZ) model. Journal of Materials Science: Materials in Electronics, 2017, 28, 11689-11694.	1.1	9
42	Probabilistic Palmgren–Miner rule, with application to solder materials experiencing elastic deformations. Journal of Materials Science: Materials in Electronics, 2017, 28, 2680-2685.	1.1	13
43	Solder material experiencing low temperature inelastic stress and random vibration loading: predicted remaining useful lifetime. Journal of Materials Science: Materials in Electronics, 2017, 28, 3585-3597.	1.1	12
44	Flip-chip assembly: is the bi-material model acceptable?. Journal of Materials Science: Materials in Electronics, 2017, 28, 15775-15781.	1.1	2
45	Reliability physics behind the QFN state of stress. Journal of Materials Science: Materials in Electronics, 2017, 28, 2160-2171.	1.1	1
46	Human-in-the-loop: application of the double exponential probability distribution function enables one to quantify the role of the human factor. International Journal of Human Factors Modelling and Simulation, 2017, 5, 354.	0.1	9
47	Could thermal stresses in a BGA/CGA-system be evaluated from a model intended for a homogeneously bonded assembly?. Journal of Materials Science: Materials in Electronics, 2016, 27, 570-579.	1.1	20
48	A novel approach for evaluation of material interfaces in electronics. , 2016, , .		2
49	Semiconductor film grown on a circular substrate: predictive modeling of lattice-misfit stresses. Journal of Materials Science: Materials in Electronics, 2016, 27, 9356-9362.	1.1	4
50	Column-grid-array (CGA) versus ball-grid-array (BGA): board-level drop test and the expected dynamic stress in the solder material. Journal of Materials Science: Materials in Electronics, 2016, 27, 11572-11582.	1.1	8
51	Predicted thermal stresses in a TSV design. , 2016, , .		0
52	Predicted stresses in a ball-grid-array (BGA)/column-grid-array (CGA) assembly with an epoxy adhesive at its ends. Journal of Materials Science: Materials in Electronics, 2016, 27, 4399-4409.	1.1	8
53	Expected stress relief in a bi-material inhomogeneously bonded assembly with a low-modulus-and/or-low-fabrication-temperature bonding material at the ends. Journal of Materials Science: Materials in Electronics, 2016, 27, 5563-5574.	1.1	8
54	Could dynamic strength of a bonding material in an electronic device be assessed from static shear-off test data?. Journal of Materials Science: Materials in Electronics, 2016, 27, 6697-6702.	1.1	3

#	Article	IF	Citations
55	Power core (PC) embedding a plurality of IC devices and sandwiched between two dissimilar insulated metal substrates (IMS'): predicted thermal stresses. Journal of Materials Science: Materials in Electronics, 2016, 27, 7646-7656.	1.1	1
56	Board level drop test: exact solution to the problem of the nonlinear dynamic response of a PCB to the drop impact. Journal of Materials Science: Materials in Electronics, 2016, 27, 9423-9430.	1.1	3
57	Bi-material assembly with a low-modulus-and/or-low-fabrication-temperature bonding material at its ends: optimized stress relief. Journal of Materials Science: Materials in Electronics, 2016, 27, 4816-4825.	1.1	8
58	Bi-material assembly subjected to thermal stress: propensity to delamination assessed using interfacial compliance model. Journal of Materials Science: Materials in Electronics, 2016, 27, 6779-6785.	1.1	7
59	Aerospace electronics-and-photonics (AEP) reliability has to be quantified to be assured., 2016,,.		1
60	Predicted stresses in ball-grid-array (BGA) and column-grid-array (CGA) interconnections in a mirror-like package design. Journal of Materials Science: Materials in Electronics, 2016, 27, 2430-2441.	1.1	8
61	Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?. EPJ Applied Physics, 2015, 71, 31301.	0.3	17
62	Analytical bathtub curve with application to electron device reliability. Journal of Materials Science: Materials in Electronics, 2015, 26, 6633-6638.	1.1	10
63	Bow-Free Tri-Component Mechanically Pre-Stressed Failure-Oriented-Accelerated-Test (FOAT) Specimen. , 2015, , .		1
64	Scanning acoustic microscopy and shear wave imaging mode performances for failure detection in high-density microassembling technologies. , 2015, , .		3
65	Human-in-the-loop: probabilistic predictive modelling, its role, attributes, challenges and applications. Theoretical Issues in Ergonomics Science, 2015, 16, 99-123.	1.0	10
66	Probabilistic modelling of the concept of anticipation in aviation. Theoretical Issues in Ergonomics Science, 2015, 16, 69-85.	1.0	9
67	Predicted stresses in a ball-grid-array (BGA)/column-grid-array (CGA) assembly with a low modulus solder at its ends. Journal of Materials Science: Materials in Electronics, 2015, 26, 9680-9688.	1.1	12
68	Could application of column-grid-array (CGA) technology result in inelastic-strain-free state-of-stress in solder material?. Journal of Materials Science: Materials in Electronics, 2015, 26, 10062-10067.	1.1	14
69	Aging-related failure rate obtained from bathtub curve data. , 2015, , .		3
70	Probabilistic design for reliability in electronics and photonics: Role, significance, attributes, challenges., 2015,,.		6
71	Analytical (mathematical) predictive modeling in fiber optics structural analysis (FOSA): review and extension. Proceedings of SPIE, 2015, , .	0.8	5
72	Predicted Thermal- and Lattice-Mismatch Stresses. , 2015, , 983-1005.		6

#	Article	IF	CITATIONS
73	Quantified Reliability of Aerospace Optoelectronics. SAE International Journal of Aerospace, 2014, 7, 65-73.	4.0	5
74	Human-in-the-Loop (HITL): Probabilistic Predictive Modeling (PPM) of an Aerospace Mission/Situation Outcome. Aerospace, 2014, 1, 101-136.	1.1	11
75	Towards adequate qualification testing of electronic products: Review and extension. , 2014, , .		1
76	Statistics-related and reliability-physics-related failure processes in electronics devices and products. Modern Physics Letters B, 2014, 28, 1450105.	1.0	12
77	Analysis of a Bow-Free Prestressed Test Specimen. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	10
78	Thermomechanical stress analysis of copper/silicon interface in through silicon vias using FEM simulations and experimental analysis. , $2014, \dots$		2
79	Reliability physics and probabilistic design for reliability (PDfR): Role, attributes, challenges. , 2014, , .		5
80	Three-step concept (TSC) in modeling microelectronics reliability (MR): Boltzmann–Arrhenius–Zhurkov (BAZ) probabilistic physics-of-failure equation sandwiched between two statistical models. Microelectronics Reliability, 2014, 54, 2594-2603.	0.9	15
81	Manned missions to Mars: Minimizing risks of failure. Acta Astronautica, 2014, 93, 148-161.	1.7	29
82	HALT, FOAT and their role in making a viable device into a reliable product. , 2014, , .		15
83	Aerospace optoelectronics reliability: application of multi-parametric BAZ model., 2014,,.		8
84	Thermal stress in through-silicon-vias: Theory-of-elasticity approach. Microelectronics Reliability, 2014, 54, 972-977.	0.9	17
85	Minimizing thermally induced interfacial shearing stress in a thermoelectric module with low fractional area coverage. Microelectronics Journal, 2014, 45, 547-553.	1.1	24
86	Fiber optics engineering: Physical design for reliability. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 153-182.	0.6	6
87	Could electronics reliability be predicted, quantified and assured?. Microelectronics Reliability, 2013, 53, 925-936.	0.9	40
88	Design-for-reliability (DfR) of aerospace electronics: Attributes and challenges. , 2013, , .		11
89	Assuring Electronics Reliability: What Could and Should Be Done Differently. , 2013, , .		9
90	Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts. , 2013, , .		21

#	Article	IF	CITATIONS
91	Saint-Venant's principle and the minimum length of a dual-coated optical fiber specimen in reliability (proof) testing. Microelectronics Reliability, 2013, 53, 1506-1509.	0.9	7
92	BOLTZMANN–ARRHENIUS–ZHURKOV (BAZ) MODEL IN PHYSICS-OF-MATERIALS PROBLEMS. Modern Physics Letters B, 2013, 27, 1330009.	1.0	36
93	Thermal Stress Failures in Electronics and Photonics: Physics, Modeling, Prevention. Journal of Thermal Stresses, 2013, 36, 537-563.	1.1	26
94	Predicted Thermal Stresses in a Trimaterial Assembly With Application to Silicon-Based Photovoltaic Module. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	11
95	Predicted Thermal Stress in a Multileg Thermoelectric Module (TEM) Design. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	16
96	Predicted Size of an Inelastic Zone in a Ball-Grid-Array Assembly. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	12
97	Predicted size of the inelastic zone in a ball-grid-array (BGA) assembly. , 2013, , .		2
98	STRUCTURAL DYNAMICS OF ELECTRONIC SYSTEMS. Modern Physics Letters B, 2013, 27, 1330004.	1.0	6
99	'Miracle-on-the-Hudson': quantitative aftermath. International Journal of Human Factors Modelling and Simulation, 2013, 4, 35.	0.1	19
100	Predicted Response of the Die-Carrier Assembly in Flexible Electronics to the Combined Action of Tension and Bending Applied to the Carrier. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	6
101	Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module Design?. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	38
102	Elastic Stability of a Cantilever Beam (Rod) Supported by an Elastic Foundation, With Application to Nano-Composites. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	9
103	Human in the Loop: Predicted Likelihood of Vehicular Mission Success and Safety. Journal of Aircraft, 2012, 49, 29-36.	1.7	28
104	Dynamic response of electronic systems to shocks and vibrations: Application of analytical (mathematical) modeling. EPJ Web of Conferences, 2012, 26, 05002.	0.1	1
105	Probabilistic design-for-reliability concept and novel approach to qualification testing of aerospace electronic products. , 2012, , .		19
106	Improved performances of polymer-based dielectric by using inorganic/organic core-shell nanoparticles. Applied Physics Letters, 2012, 101, .	1.5	14
107	When adequate and predictable reliability is imperative. Microelectronics Reliability, 2012, 52, 2342-2346.	0.9	12
108	Analysis of a bi-material strip. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2012, 92, 320-328.	0.9	0

#	Article	IF	CITATIONS
109	Bending of a bi-material cantilever beam, with consideration of the role of the interfacial shearing stress. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2012, 92, 573-582.	0.9	1
110	Stresses in bi-material GaN assemblies. Journal of Applied Physics, 2011, 110, .	1.1	11
111	Analysis of an elongated stretched strip, with application to a strain-gage electrical sensor design. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 330-338.	0.9	3
112	Analysis of a pre-stressed bi-material accelerated-life-test (ALT) specimen. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 371-385.	0.9	18
113	Predicted stresses in die-carrier assemblies in "stretchable―electronics: is there an incentive for using a compliant bond?. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 57-67.	0.9	5
114	Two Men in a Cockpit: Casualty Likelihood if One Pilot Becomes Incapacitated. Journal of Aircraft, 2011, 48, 1309-1314.	1.7	15
115	Fiber optic interconnects: physical design for reliability. , 2010, , .		1
116	Interfacial Stresses in a Lap Shear Joint (LSJ): The "Transverse Groove Effect" (TGE). Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1116-1130.	0.5	5
117	Duffing Oscillator: Could an Impact Load of Finite Duration be Substituted with an Instantaneous Impulse?. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1381-1397.	0.5	5
118	Probabilistic modelling of the role of the human factor in the Helicopter-Landing-Ship (HLS) situation. International Journal of Human Factors Modelling and Simulation, 2010, 1, 313.	0.1	5
119	Helicopter Landing Ship: Undercarriage Strength and the Role of the Human Factor. Journal of Offshore Mechanics and Arctic Engineering, 2010, 132, .	0.6	15
120	Physical Properties and Mechanical Behavior of Carbon Nano-tubes (CNTs) and Carbon Nano-fibers (CNFs) as Thermal Interface Materials (TIMs) for High-Power Integrated Circuit (IC) Packages: Review and Extension., 2010,, 315-347.		1
121	Predictive Modeling of the Dynamic Response of Electronic Systems to Shocks and Vibrations. Applied Mechanics Reviews, 2010, 63, .	4.5	8
122	Analytical (& #x201C; mathematical & amp; #x201D;) modeling of the dynamic response of a printed circuit board (PCB) to an impact load., 2010,,.		2
123	Predictive Analytical Thermal Stress Modeling in Electronics and Photonics. Applied Mechanics Reviews, 2009, 62, .	4.5	51
124	Nonlinear dynamic response of a â€~flexible-and-heavy' printed circuit board (PCB) to an impact load applied to its support contour. Journal Physics D: Applied Physics, 2009, 42, 045506.	1.3	19
125	Thermal stress in a bi-material assembly with a â€~piecewise-continuous' bonding layer: theorem of three axial forces. Journal Physics D: Applied Physics, 2009, 42, 045507.	1.3	17
126	On a Paradoxical Situation Related to Bonded Joints: Could Stiffer Mid-Portions of a Compliant Attachment Result in Lower Thermal Stress?. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 990-997.	0.5	15

#	Article	IF	Citations
127	Compliance properties study of carbon nanofibres (CNFs) array as thermal interface material. Journal Physics D: Applied Physics, 2008, 41, 155105.	1.3	6
128	Interfacial stresses in a bi-material assembly with a compliant bonding layer. Journal Physics D: Applied Physics, 2008, 41, 115504.	1.3	10
129	On a paradoxical situation related to lap shear joints: could transverse grooves in the adherends reduce the interfacial stresses?. Journal Physics D: Applied Physics, 2008, 41, 115505.	1.3	12
130	Disc-like copper vias fabricated in a silicon wafer: Design for reliability. , 2008, , .		6
131	Elastic stability of a dual coated optical fiber with a stripped off coating at its end. Journal of Applied Physics, 2007, 102, .	1.1	5
132	Elastic stability of a dual-coated optical fiber of finite length. Journal of Applied Physics, 2007, 102, 043107.	1.1	8
133	Reliability improvement through nanoparticle material-based fiber structures. Optical Fiber Technology, 2007, 13, 27-31.	1.4	6
134	Response of a heavy electronic component to harmonic excitations applied to its external electric leads. Elektrotechnik Und Informationstechnik, 2007, 124, 309-314.	0.7	5
135	Thermal properties of carbon nanotube array used for integrated circuit cooling. Journal of Applied Physics, 2006, 100, 074302.	1.1	95
136	Interfacial thermal stresses in a bi-material assembly with a low-yield-stress bonding layer. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 1421-1432.	0.8	31
137	Effect of rapid thermal annealing (RTA) on thermal properties of carbon nanofibre (CNF) arrays. Journal Physics D: Applied Physics, 2006, 39, 4878-4885.	1.3	14
138	Bonding strength of a carbon nanofiber array to its substrate. Journal of Materials Research, 2006, 21, 2922-2926.	1.2	13
139	Effective Young's modulus of carbon nanofiber array. Journal of Materials Research, 2006, 21, 2948-2954.	1.2	12
140	Predicted thermal stresses in a bow-free adhesively bonded assembly for photonic packaging applications. Elektrotechnik Und Informationstechnik, 2003, 120, 195-199.	0.7	8
141	Bimaterial assembly with a low modulus bonding layer at the ends. Journal of Applied Physics, 2003, 93, 3657-3661.	1.1	24
142	Accelerated Life Testing (ALT) in Microelectronics and Photonics: Its Role, Attributes, Challenges, Pitfalls, and Interaction With Qualification Tests1. Journal of Electronic Packaging, Transactions of the ASME, 2002, 124, 281-291.	1.2	49
143	<title>Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests</title> ., 2002, 4703, 162.		9
144	Thermal stress in a polymer-coated optical glass fiber with a low-modulus coating at the ends. Journal of Materials Research, 2001, 16, 2996-3004.	1.2	44

#	Article	IF	CITATIONS
145	Predicted thermal stresses in a bimaterial assembly adhesively bonded at the ends. Journal of Applied Physics, 2001, 89, 120-129.	1.1	50
146	Analysis of interfacial thermal stresses in a trimaterial assembly. Journal of Applied Physics, 2001, 89, 3685-3694.	1.1	72
147	Adhesively bonded assemblies with identical nondeformable adherends and †piecewise continuous†adhesive layer: predicted thermal stresses in the adhesive. International Journal of Solids and Structures, 2000, 37, 2229-2252.	1.3	43
148	Microelectronics and photonics â€" the future. Microelectronics Journal, 2000, 31, 839-851.	1.1	43
149	Predicted Fundamental Vibration Frequency of a Heavy Electronic Component Mounted on a Printed Circuit Board. Journal of Electronic Packaging, Transactions of the ASME, 2000, 122, 3-5.	1.2	19
150	Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure. Journal of Applied Physics, 2000, 88, 2363-2370.	1.1	38
151	Optical fiber interconnect with the ends offset and axial loading: What could be done to reduce the tensile stress in the fiber?. Journal of Applied Physics, 2000, 88, 3865.	1.1	21
152	Adhesively bonded assemblies with identical nondeformable adherends: modeling of the induced thermal stresses in the adhesive layer. Composite Interfaces, 1998, 6, 135-154.	1.3	17
153	Adhesively Bonded Assemblies with Identical Nondeformable Adherends and Nonhomogeneous Adhesive Layer: Predicted Thermal Stresses in the Adhesive. Journal of Reinforced Plastics and Composites, 1998, 17, 1588-1606.	1.6	17
154	Bending Stress in an Optical Fiber Interconnect Experiencing Significant Ends Off-Set. Materials Research Society Symposia Proceedings, 1998, 531, 209.	0.1	16
155	The Future of Microelectronics and Photonics and the Role of Mechanics and Materials. Journal of Electronic Packaging, Transactions of the ASME, 1998, 120, 1-11.	1.2	28
156	Probabilistic approach to evaluate improvements in the reliability of a chip-substrate (chip-card) assembly. IEEE Transactions on Components and Packaging Technologies, 1997, 20, 60-63.	0.7	4
157	Predicted Thermal Mismatch Stresses in a Cylindrical Bi-material Assembly Adhesively Bonded at Its Ends. Journal of Applied Mechanics, Transactions ASME, 1997, 64, 15-22.	1.1	28
158	Applied Probability for Engineers and Scientists. Journal of Electronic Packaging, Transactions of the ASME, 1997, 119, 213-214.	1.2	93
159	Failure criterion for moisture-sensitive plastic packages of integrated circuit (IC) devices: Application of von $K\tilde{A}_i$ rm \tilde{A}_i n's equations with consideration of thermoelastic strains. International Journal of Solids and Structures, 1997, 34, 2991-3019.	1.3	24
160	How Compliant Should a Die-Attachment be to Protect the Chip From Substrate Bowing?. Journal of Electronic Packaging, Transactions of the ASME, 1995, 117, 88-92.	1.2	8
161	Thermally induced stresses in an optical glass fiber soldered into a ferrule. Journal of Lightwave Technology, 1994, 12, 1766-1770.	2.7	51
162	Approximate evaluation of the interfacial shearing stress in cylindrical double lap shear joints with application to dual-coated optical fibers. International Journal of Solids and Structures, 1994, 31, 3261-3283.	1.3	21

#	Article	IF	Citations
163	Approximate Evaluation of the Elastic Thermal Stresses in a Thin Film Fabricated on a Very Thick Circular Substrate. Journal of Electronic Packaging, Transactions of the ASME, 1994, 116, 171-176.	1.2	24
164	Predicted stresses and strains in fused biconical taper couplers subjected to tension. Applied Optics, 1993, 32, 3237.	2.1	21
165	Response of a Flexible Printed Circuit Board to Periodic Shock Loads Applied to its Support Contour. Journal of Applied Mechanics, Transactions ASME, 1992, 59, S253-S259.	1.1	28
166	Nonlinear dynamic response of a flexible thin plate to constant acceleration applied to its support contour, with application to printed circuit boards, used in avionic packaging. International Journal of Solids and Structures, 1992, 29, 41-55.	1.3	28
167	Stress Relief in Solder Joints Due to the Application of a Flex Circuit. Journal of Electronic Packaging, Transactions of the ASME, 1991, 113, 240-243.	1.2	8
168	Structural Analysis in Microelectronic and Fiber-Optic Systems. , 1991, , .		95
169	Solder-Glass Attachment in Cerdip/Cerquad Packages: Thermally Induced Stresses and Mechanical Reliability. Journal of Electronic Packaging, Transactions of the ASME, 1990, 112, 204-209.	1.2	17
170	Mechanical Behavior of Flip-Chip Encapsulants. Journal of Electronic Packaging, Transactions of the ASME, 1990, 112, 327-332.	1.2	27
171	Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers. Journal of Lightwave Technology, 1990, 8, 863-868.	2.7	69
172	Buffering effect of fiber coating and its influence on the proof test load in optical fibers. Applied Optics, 1990, 29, 2682.	2.1	19
173	Interfacial Stresses in Bimetal Thermostats. Journal of Applied Mechanics, Transactions ASME, 1989, 56, 595-600.	1.1	289
174	Analytical Modeling in Electronic Packaging Structures: Its Merits, Shortcomings and Interaction With Experimental and Numerical Techniques. Journal of Electronic Packaging, Transactions of the ASME, 1989, 111, 157-161.	1.2	35
175	Axisymmetric Elastic Deformations of a Finite Circular Cylinder With Application to Low Temperature Strains and Stresses in Solder Joints. Journal of Applied Mechanics, Transactions ASME, 1989, 56, 328-333.	1.1	31
176	Spring constant in the buckling of dual-coated optical fibers. Journal of Lightwave Technology, 1988, 6, 1240-1244.	2.7	36
177	Effect of initial curvature on low temperature microbending in optical fibers. Journal of Lightwave Technology, 1988, 6, 1321-1327.	2.7	53
178	An Approximate Analysis of Stresses in Multilayered Elastic Thin Films. Journal of Applied Mechanics, Transactions ASME, 1988, 55, 143-148.	1.1	192
179	New approach to the high quality epitaxial growth of latticeâ€mismatched materials. Applied Physics Letters, 1986, 49, 140-142.	1.5	357
180	Stresses in Adhesively Bonded Bi-Material Assemblies Used in Electronic Packaging. Materials Research Society Symposia Proceedings, 1986, 72, 133.	0.1	38

#	Article	IF	CITATIONS
181	Stresses in Bi-Metal Thermostats. Journal of Applied Mechanics, Transactions ASME, 1986, 53, 657-660.	1.1	438
182	Linear and nonlinear vibrations caused by periodic impulses., 1985,,.		11
183	Solder-glass attachment in Cerdip/Cerquad packages: thermally induced stresses and mechanical reliability. , 0, , .		14
184	Mechanical behavior and reliability of solder joint interconnections in thermally matched assemblies. , 0, , .		5
185	The future of microelectronics and photonics and the role of mechanics and materials. , 0, , .		4
186	Microelectronics and photonics-the future. , 0, , .		3
187	Could shock tests adequately mimic drop test conditions?. , 0, , .		25
188	Driver propensity to fatigue and drowsiness: a probabilistic approach. Theoretical Issues in Ergonomics Science, 0, , 1-17.	1.0	2
189	How accurate should sight distance measurements be?. Theoretical Issues in Ergonomics Science, 0, , 1-7.	1.0	O
190	Brake Power Required to Avoid Vehicular Obstruction with a Steadfast Obstacle: A Probabilistic Approach. Journal of Advances in Applied & Computational Mathematics, 0, 8, 16-20.	0.1	0
191	Human-in-the-Loop. , 0, , .		14