Frederic chibon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529344/publications.pdf

Version: 2024-02-01

108 5,906 44
papers citations h-index

114 114 7802 all docs docs citations times ranked citing authors

79541

73

g-index

#	Article	IF	CITATIONS
1	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
2	Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nature Medicine, 2010, 16, 781-787.	15.2	394
3	Most Malignant Fibrous Histiocytomas Developed in the Retroperitoneum Are Dedifferentiated Liposarcomas: A Review of 25 Cases Initially Diagnosed as Malignant Fibrous Histiocytoma. Modern Pathology, 2003, 16, 256-262.	2.9	199
4	Intimal Sarcoma Is the Most Frequent Primary Cardiac Sarcoma. American Journal of Surgical Pathology, 2014, 38, 461-469.	2.1	146
5	Cancer gene expression signatures – The rise and fall?. European Journal of Cancer, 2013, 49, 2000-2009.	1.3	142
6	Chromosome Instability Accounts for Reverse Metastatic Outcomes of Pediatric and Adult Synovial Sarcomas. Journal of Clinical Oncology, 2013, 31, 608-615.	0.8	135
7	Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncology, The, 2016, 17, 532-538.	5.1	134
8	Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. European Journal of Human Genetics, 2007, 15, 767-773.	1.4	129
9	MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors. PLoS ONE, 2012, 7, e40015.	1.1	126
10	Clinical and Biological Significance of <i>CDK4</i> Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Clinical Cancer Research, 2009, 15, 5696-5703.	3.2	124
11	Consistent <i>SMARCB1</i> homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosomes and Cancer, 2014, 53, 475-486.	1.5	120
12	Mitotic Checkpoints and Chromosome Instability Are Strong Predictors of Clinical Outcome in Gastrointestinal Stromal Tumors. Clinical Cancer Research, 2012, 18, 826-838.	3.2	118
13	New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. Journal of Pathology, 2011, 223, 64-71.	2.1	112
14	Remarkable Response to Crizotinib in Woman With Anaplastic Lymphoma Kinase–Rearranged Anaplastic Thyroid Carcinoma. Journal of Clinical Oncology, 2015, 33, e84-e87.	0.8	108
15	Adult desmoid tumors: biology, management and ongoing trials. Current Opinion in Oncology, 2017, 29, 268-274.	1.1	104
16	Leiomyosarcomas and Most Malignant Fibrous Histiocytomas Share Very Similar Comparative Genomic Hybridization Imbalances: An Analysis of a Series of 27 Leiomyosarcomas. Laboratory Investigation, 2001, 81, 211-215.	1.7	99
17	A subgroup of malignant fibrous histiocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genetics and Cytogenetics, 2002, 139, 24-29.	1.0	99
18	<i>YAP1</i> and <i>VGLL3</i> , encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes and Cancer, 2010, 49, 1161-1171.	1.5	98

#	Article	IF	Citations
19	Adult-type Rhabdomyosarcoma: Analysis of 57 Cases With Clinicopathologic Description, Identification of 3 Morphologic Patterns and Prognosis. American Journal of Surgical Pathology, 2009, 33, 1850-1859.	2.1	96
20	Constant p53 Pathway Inactivation in a Large Series of Soft Tissue Sarcomas with Complex Genetics. American Journal of Pathology, 2010, 177, 2080-2090.	1.9	92
21	Molecular characterization by array comparative genomic hybridization and DNA sequencing of 194 desmoid tumors. Genes Chromosomes and Cancer, 2010, 49, 560-568.	1.5	89
22	Grading of soft tissue sarcomas: from histological to molecular assessment. Pathology, 2014, 46, 113-120.	0.3	88
23	Nuclear-Receptor-Mediated Telomere Insertion Leads to Genome Instability in ALT Cancers. Cell, 2015, 160, 913-927.	13.5	86
24	Secretory Breast Carcinoma. American Journal of Surgical Pathology, 2015, 39, 1458-1467.	2.1	79
25	YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Modern Pathology, 2013, 26, 1390-1400.	2.9	78
26	Are Peripheral Purely Undifferentiated Pleomorphic Sarcomas With MDM2 Amplification Dedifferentiated Liposarcomas?. American Journal of Surgical Pathology, 2014, 38, 293-304.	2.1	76
27	Identification of a Recurrent STRN/ALK Fusion in Thyroid Carcinomas. PLoS ONE, 2014, 9, e87170.	1.1	73
28	Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Modern Pathology, 2010, 23, 1657-1666.	2.9	70
29	Fluorescence in situ hybridization analysis is a helpful test for the diagnosis of dermatofibrosarcoma protuberans. Modern Pathology, 2015, 28, 230-237.	2.9	68
30	RNA sequencing validation of the Complexity INdex inÂSARComas prognostic signature. European Journal of Cancer, 2016, 57, 104-111.	1.3	66
31	Clinicopathologic and Molecular Features of a Series of 41 Biphenotypic Sinonasal Sarcomas Expanding Their Molecular Spectrum. American Journal of Surgical Pathology, 2019, 43, 747-754.	2.1	65
32	Uterine smooth muscle tumor analysis by comparative genomic hybridization: a useful diagnostic tool in challenging lesions. Modern Pathology, 2015, 28, 1001-1010.	2.9	60
33	Loss of Chromosome 13 is the Most Frequent Genomic Imbalance in Malignant Fibrous Histiocytomas. Cancer Genetics and Cytogenetics, 1999, 111, 134-138.	1.0	59
34	MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors. International Journal of Cancer, 2014, 135, 348-361.	2.3	57
35	ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes and Cancer, 2004, 40, 32-37.	1.5	56
36	Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Modern Pathology, 2018, 31, 1683-1693.	2.9	56

#	Article	IF	Citations
37	Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. Journal of Clinical Investigation, 2019, 129, 1863-1877.	3.9	56
38	Superficial primitive Ewing's sarcoma: a clinicopathologic and molecular cytogenetic analysis of 14 cases. Modern Pathology, 2009, 22, 87-94.	2.9	55
39	Impact of Molecular Analysis on the Final Sarcoma Diagnosis. American Journal of Surgical Pathology, 2013, 37, 1259-1268.	2.1	55
40	MED12 and uterine smooth muscle oncogenesis: State of the art and perspectives. European Journal of Cancer, 2015, 51, 1603-1610.	1.3	54
41	Malignant dermatofibroma: clinicopathological, immunohistochemical, and molecular analysis of seven cases. Modern Pathology, 2013, 26, 256-267.	2.9	49
42	Prediction of HER2 gene status in Her2 2+ invasive breast cancer: a study of 108 cases comparing ASCO/CAP and FDA recommendations. Modern Pathology, 2009, 22, 403-409.	2.9	48
43	Fibrosarcoma-like Lipomatous Neoplasm. American Journal of Surgical Pathology, 2013, 37, 1373-1378.	2.1	48
44	Genetic Profiling Identifies Two Classes of Soft-Tissue Leiomyosarcomas with Distinct Clinical Characteristics. Clinical Cancer Research, 2013, 19, 1190-1196.	3.2	46
45	Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions: a comprehensive array-genomic hybridization analysis of 77 tumors. Modern Pathology, 2018, 31, 816-828.	2.9	46
46	Gene Expression Profiling of Desmoid Tumors by cDNA Microarrays and Correlation with Progression-Free Survival. Clinical Cancer Research, 2015, 21, 4194-4200.	3.2	43
47	Greatwall promotes cell transformation by hyperactivating AKT in human malignancies. ELife, 2015, 4, .	2.8	43
48	Recurrent <i>TRIO</i> Fusion in Nontranslocation–Related Sarcomas. Clinical Cancer Research, 2017, 23, 857-867.	3.2	41
49	From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas. Modern Pathology, 2012, 25, 197-211.	2.9	38
50	Molecular characterization of the response to chemotherapy in conventional osteosarcomas: Predictive value of HSD17B10 and IFITM2. International Journal of Cancer, 2009, 125, 851-860.	2.3	36
51	Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget, 2016, 7, 885-901.	0.8	31
52	Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. British Journal of Cancer, 2017, 117, 1787-1797.	2.9	30
53	Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. Nucleic Acids Research, 2018, 46, 10157-10172.	6.5	30
54	Validation of the Complexity INdex in SARComas prognostic signature on formalin-fixed, paraffin-embedded, soft-tissue sarcomas. Annals of Oncology, 2018, 29, 1828-1835.	0.6	30

#	Article	IF	Citations
55	⟨i⟩GREB1â€CTNNB1⟨ i⟩ fusion transcript detected by RNAâ€sequencing in a uterine tumor resembling ovarian sex cord tumor (UTROSCT): A novel ⟨i⟩CTNNB1⟨ i⟩ rearrangement. Genes Chromosomes and Cancer, 2019, 58, 155-163.	1.5	30
56	The use of clustering software for the classification of comparative genomic hybridization data. Cancer Genetics and Cytogenetics, 2003, 141, 75-78.	1.0	29
57	Monosomy 7 and absence of 12q amplification in two cases of spindle cell liposarcomas. Cancer Genetics and Cytogenetics, 2008, 184, 99-104.	1.0	27
58	PRIMA-1MET induces death in soft-tissue sarcomas cell independent of p53. BMC Cancer, 2015, 15, 684.	1.1	27
59	Genomic index predicts clinical outcome of intermediate-risk gastrointestinal stromal tumours, providing a new inclusion criterion for imatinib adjuvant therapy. European Journal of Cancer, 2015, 51, 75-83.	1.3	26
60	Genomic and transcriptomic comparison of post-radiation versus sporadic sarcomas. Modern Pathology, 2019, 32, 1786-1794.	2.9	25
61	The CINSARC signature as a prognostic marker for clinical outcome in multiple neoplasms. Scientific Reports, 2017, 7, 5480.	1.6	24
62	Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene, 2019, 38, 6083-6094.	2.6	23
63	CINSARC signature as a prognostic marker for clinical outcome in sarcomas and beyond. Genes Chromosomes and Cancer, 2019, 58, 124-129.	1.5	23
64	Genomic complexity in pediatric synovial sarcomas (Synobio study): the European pediatric soft tissue sarcoma group (EpSSG) experience. Cancer Medicine, 2018, 7, 1384-1393.	1.3	22
65	Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Cell Cycle, 2018, 17, 605-615.	1.3	21
66	Calpain-6 controls the fate of sarcoma stem cells by promoting autophagy and preventing senescence. JCI Insight, 2018, 3, .	2.3	21
67	Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5746-E5755.	3.3	20
68	The Role of the Anti-Aging Protein Klotho in IGF-1 Signaling and Reticular Calcium Leak: Impact on the Chemosensitivity of Dedifferentiated Liposarcomas. Cancers, 2018, 10, 439.	1.7	19
69	Genome remodeling upon mesenchymal tumor cell fusion contributes to tumor progression and metastatic spread. Oncogene, 2020, 39, 4198-4211.	2.6	19
70	Relationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas. Cancer, 2021, 127, 2666-2673.	2.0	15
71	Heterogeneity in sarcoma cell lines reveals enhanced motility of tetraploid versus diploid cells. Oncotarget, 2017, 8, 16669-16689.	0.8	15
72	Promoting role of cholecystokinin 2 receptor (CCK2R) in gastrointestinal stromal tumour pathogenesis. Journal of Pathology, 2012, 228, 565-574.	2.1	14

#	Article	IF	CITATIONS
73	Smooth muscle differentiation identifies two classes of poorly differentiated pleomorphic sarcomas with distinct outcome. Modern Pathology, 2014, 27, 840-850.	2.9	14
74	Prognostic Value of PLAGL1-Specific CpG Site Methylation in Soft-Tissue Sarcomas. PLoS ONE, 2013, 8, e80741.	1.1	13
75	Inhibition of Bcl-2 family members sensitises soft tissue leiomyosarcomas to chemotherapy. British Journal of Cancer, 2016, 114, 1219-1226.	2.9	13
76	Recurrent DMD Deletions Highlight Specific Role of Dp71 Isoform in Soft-Tissue Sarcomas. Cancers, 2019, 11, 922.	1.7	13
77	The Nanocind Signature Is an Independent Prognosticator of Recurrence and Death in Uterine Leiomyosarcomas. Clinical Cancer Research, 2020, 26, 855-861.	3.2	13
78	The 200-kb segmental duplication on human chromosome 21 originates from a pericentromeric dissemination involving human chromosomes 2, 18 and 13. Gene, 2003, 312, 51-59.	1.0	12
79	Copy-neutral loss of heterozygosity and chromosome gains and losses are frequent in gastrointestinal stromal tumors. Molecular Cancer, 2014, 13, 246.	7.9	12
80	Heterogeneous Mechanisms of Secondary Resistance and Clonal Selection in Sarcoma during Treatment with Nutlin. PLoS ONE, 2015, 10, e0137794.	1.1	12
81	Molecular prognostication of uterine smooth muscle neoplasms: From CGH array to CINSARC signature and beyond. Genes Chromosomes and Cancer, 2021, 60, 129-137.	1.5	12
82	Establishment of a Human Malignant Fibrous Histiocytoma Cell Line, COMA. Cancer Genetics and Cytogenetics, 2000, 121, 117-123.	1.0	11
83	Comparative Genomic Hybridization Study of Paraffin-Embedded Dedifferentiated Liposarcoma Fixed With Holland Bouin's Fluid. Diagnostic Molecular Pathology, 2003, 12, 166-173.	2.1	11
84	LIX1 regulates YAP activity and controls gastrointestinal cancer cell plasticity. Journal of Cellular and Molecular Medicine, 2020, 24, 9244-9254.	1.6	11
85	Gene expression identifies heterogeneity of metastatic behavior among high-grade non-translocation associated soft tissue sarcomas. Journal of Translational Medicine, 2014, 12, 176.	1.8	10
86	Acquisition of cancer stem cell capacities after spontaneous cell fusion. BMC Cancer, 2021, 21, 241.	1.1	10
87	ATRX Alteration Contributes to Tumor Growth and Immune Escape in Pleomorphic Sarcomas. Cancers, 2021, 13, 2151.	1.7	10
88	Cell–cell fusion of mesenchymal cells with distinct differentiations triggers genomic and transcriptomic remodelling toward tumour aggressiveness. Scientific Reports, 2020, 10, 21634.	1.6	9
89	Pan Aurora Kinase Inhibitor: A Promising Targeted-Therapy in Dedifferentiated Liposarcomas With Differential Efficiency Depending on Sarcoma Molecular Profile. Cancers, 2020, 12, 583.	1.7	9
90	Robust gene expression signature is not merely a significant P value. European Journal of Cancer, 2013, 49, 2771-2773.	1.3	8

#	Article	IF	Citations
91	Chemotherapy in localized soft tissue sarcoma: will we soon have to treat grade 1 tumors? Update on CINSARC performances. Annals of Oncology, 2019, 30, 153-155.	0.6	8
92	A Global and Integrated Analysis of CINSARC-Associated Genetic Defects. Cancer Research, 2020, 80, 5282-5290.	0.4	8
93	Comprehensive prognostic analysis in breast cancer integrating clinical, tumoral, micro-environmental and immunohistochemical criteria. SpringerPlus, 2015, 4, 528.	1.2	7
94	Leiomyosarcomas: whole genome sequencing for a whole biology characterization. Current Opinion in Oncology, 2019, 31, 317-321.	1.1	7
95	Value of peri-operative chemotherapy in patients with CINSARC high-risk localized grade 1 or 2 soft tissue sarcoma: study protocol of the target selection phase III CHIC-STS trial. BMC Cancer, 2020, 20, 716.	1.1	7
96	<scp>CINSARC</scp> in highâ€risk soft tissue sarcoma patients treated with neoadjuvant chemotherapy: Results from the <scp>ISGâ€STS</scp> 1001 study. Cancer Medicine, 2023, 12, 1350-1357.	1.3	7
97	Myxoid Liposarcoma With Heterologous Components. Applied Immunohistochemistry and Molecular Morphology, 2015, 23, 230-235.	0.6	6
98	Primary Multicentric Angiosarcoma of Bone: True Entity or Metastases from an Unknown Primary? Value of Comparative Genomic Hybridization on Paraffin Embedded Tissues. Rare Tumors, 2013, 5, 172-174.	0.3	4
99	Wnt targets genes are not differentially expressed in desmoid tumors bearing different activating \hat{l}^2 -catenin mutations. European Journal of Surgical Oncology, 2019, 45, 691-698.	0.5	4
100	Cell fusion enhances energy metabolism of mesenchymal tumor hybrid cells to sustain their proliferation and invasion. BMC Cancer, 2021, 21, 863.	1.1	4
101	Tetraploidization of Immortalized Myoblasts Induced by Cell Fusion Drives Myogenic Sarcoma Development with DMD Deletion. Cancers, 2020, 12, 1281.	1.7	4
102	RCBTB1 Deletion Is Associated with Metastatic Outcome and Contributes to Docetaxel Resistance in Nontranslocation-Related Pleomorphic Sarcomas. Cancers, 2019, 11, 81.	1.7	3
103	Grading sarcomas: histologic and molecular approaches. Diagnostic Histopathology, 2011, 17, 325-332.	0.2	1
104	Impact of preoperative treatment on the CINSARC prognostic signature: translational research results from aAphaseA1 trial of the German Interdisciplinary Sarcoma Group (GISG 03). Strahlentherapie Und Onkologie, 2020, 196, 280-285.	1.0	1
105	Germinal GLT8D1, GATAD2A and SLC25A39 mutations in a patient with a glomangiopericytal tumor and five different sarcomas over a 10-year period. Scientific Reports, 2021, 11, 9765.	1.6	1
106	Sarcomas Genetics: From Point Mutation to Complex Karyotype, from Diagnosis to Therapies. , 2013, , 429-452.		1
107	Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Scientific Reports, 2021, 11, 23429.	1.6	1
108	Automate à inclusion rapide : l'expérience bordelaise. Revue Francophone Des Laboratoires, 2009, 2009, 39-43.	0.0	0