LÃ;szlÃ³ CsanÃ;dy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5529028/publications.pdf Version: 2024-02-01

Ι Διςτι Δ3 Οςλη Διον

#	Article	IF	CITATIONS
1	Degenerate but indispensable: How CFTR channel activity depends on the catalytically inactive ATP binding site. Journal of Physiology, 2021, 599, 4523-4524.	1.3	0
2	Molecular pathology of the R117H cystic fibrosis mutation is explained by loss of a hydrogen bond. ELife, 2021, 10, .	2.8	9
3	Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21740-21746.	3.3	22
4	Selective profiling of N- and C-terminal nucleotide-binding sites in a TRPM2 channel. Journal of General Physiology, 2020, 152, .	0.9	14
5	Structure, Gating, and Regulation of the CFTR Anion Channel. Physiological Reviews, 2019, 99, 707-738.	13.1	169
6	Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates. ELife, 2019, 8, .	2.8	19
7	Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. ELife, 2019, 8, .	2.8	24
8	lon channels as targets to treat cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2018, 17, S22-S27.	0.3	27
9	Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. ELife, 2018, 7, .	2.8	115
10	Molecular Structure of the Human CFTR Ion Channel. Cell, 2017, 169, 85-95.e8.	13.5	421
11	CFTR gating: Invisible transitions made visible. Journal of General Physiology, 2017, 149, 413-416.	0.9	2
12	Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions. ELife, 2017, 6, .	2.8	27
13	A new target for G protein signaling. ELife, 2017, 6, .	2.8	10
14	A single active catalytic site is sufficient to promote transport in P-glycoprotein. Scientific Reports, 2016, 6, 24810.	1.6	42
15	The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity. ELife, 2016, 5, .	2.8	48
16	Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization. ELife, 2016, 5, .	2.8	26
17	Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2′-phosphate. Journal of General Physiology, 2015, 145, 419-430.	0.9	53
18	Timing of CFTR Pore Opening and Structure of Its Transition State. Cell, 2015, 163, 724-733.	13.5	61

LÃiszlÃ³ CsanÃidy

#	Article	IF	CITATIONS
19	Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16949-16954.	3.3	38
20	Structure–activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects. Journal of General Physiology, 2014, 144, 321-336.	0.9	12
21	Effects of a Non-Hydrolyzable ADP-Ribose Analog on the Gating of the TRPM2 Channel. Biophysical Journal, 2014, 106, 639a.	0.2	Ο
22	Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating. Journal of General Physiology, 2014, 143, 269-287.	0.9	18
23	Conformational changes in the catalytically inactive nucleotide-binding site of CFTR. Journal of General Physiology, 2013, 142, 61-73.	0.9	23
24	CFTR, an Ion Channel Evolved from ABC Transporter. , 2013, , 254-265.		4
25	Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proceedings of the United States of America, 2012, 109, 13440-13445.	3.3	60
26	Effects of Extracellular Ca2+ on TRPM2 Channel Gating. Biophysical Journal, 2011, 100, 520a.	0.2	0
27	Linking the Catalytic Cycle of the Nucleotide Binding Domains to Channel Gating in CFTR. Biophysical Journal, 2011, 100, 364a.	0.2	0
28	Mitoxantrone is expelled by the ABCG2 multidrug transporter directly from the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 154-163.	1.4	34
29	Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating. Journal of General Physiology, 2011, 137, 549-562.	0.9	40
30	Electrophysiological, Biochemical, and Bioinformatic Methods for Studying CFTR Channel Gating and Its Regulation. Methods in Molecular Biology, 2011, 741, 443-469.	0.4	3
31	PERSPECTIVES: Permeating proton found guilty in compromising TRPM2 channel activity. Journal of Physiology, 2010, 588, 1661-1662.	1.3	8
32	Degenerate ABC composite site is stably glued together by trapped ATP. Journal of General Physiology, 2010, 135, 395-398.	0.9	7
33	Strict coupling between CFTR's catalytic cycle and gating of its Cl ^{â~'} ion pore revealed by distributions of open channel burst durations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1241-1246.	3.3	109
34	Identification of Direct and Indirect Effectors of the Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel. Journal of Biological Chemistry, 2010, 285, 30091-30102.	1.6	88
35	Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2. Journal of General Physiology, 2010, 136, 407-423.	0.9	23
36	Direct and Indirect Effectors of the TRPM2 Cation Channel. Biophysical Journal, 2010, 98, 326a.	0.2	0

LÃiszlÃ³ CsanÃidy

#	Article	IF	CITATIONS
37	Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms. Journal of General Physiology, 2009, 134, 129-136.	0.9	12
38	Four Ca2+ lons Activate TRPM2 Channels by Binding in Deep Crevices near the Pore but Intracellularly of the Gate. Journal of General Physiology, 2009, 133, 189-203.	0.9	90
39	A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT. Biophysical Journal, 2009, 96, 2490-2504.	0.2	87
40	Sulfonylurea Receptors Type 1 and 2A Randomly Assemble to Form Heteromeric KATP Channels of Mixed Subunit Composition. Journal of General Physiology, 2008, 131, 43-58.	0.9	25
41	Sulfonylurea Receptors Type 1 and 2A Randomly Assemble to Form Heteromeric KATPChannels of Mixed Subunit Composition. Journal of Cell Biology, 2008, 180, i4-i4.	2.3	0
42	Statistical Evaluation of Ion-Channel Gating Models Based on Distributions of Log-Likelihood Ratios. Biophysical Journal, 2006, 90, 3523-3545.	0.2	18
43	The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature, 2006, 440, 477-483.	13.7	624
44	The N-terminal transmembrane domain (TMD0) and a cytosolic linker (L0) of sulphonylurea receptor define the unique intrinsic gating of KATPchannels. Journal of Physiology, 2006, 576, 379-389.	1.3	33
45	Thermodynamics of CFTR Channel Gating: A Spreading Conformational Change Initiates an Irreversible Gating Cycle. Journal of General Physiology, 2006, 128, 523-533.	0.9	54
46	Preferential Phosphorylation of R-domain Serine 768 Dampens Activation of CFTR Channels by PKA. Journal of General Physiology, 2005, 125, 171-186.	0.9	66
47	Functional Roles of Nonconserved Structural Segments in CFTR's NH2-terminal Nucleotide Binding Domain. Journal of General Physiology, 2005, 125, 43-55.	0.9	55
48	Antagonistic Regulation of Native Ca2+- and ATP-sensitive Cation Channels in Brain Capillaries by Nucleotides and Decavanadate. Journal of General Physiology, 2004, 123, 743-757.	0.9	13
49	Ca2+- and Voltage-Dependent Gating of Ca2+- and ATP-Sensitive Cationic Channels in Brain Capillary Endothelium. Biophysical Journal, 2003, 85, 313-327.	0.2	27
50	Severed Channels Probe Regulation of Gating of Cystic Fibrosis Transmembrane Conductance Regulator by Its Cytoplasmic Domains. Journal of General Physiology, 2000, 116, 477-500.	0.9	117
51	Rapid Kinetic Analysis of Multichannel Records by a Simultaneous Fit to All Dwell-Time Histograms. Biophysical Journal, 2000, 78, 785-799.	0.2	74
52	Severed Molecules Functionally Define the Boundaries of the Cystic Fibrosis Transmembrane Conductance Regulator's Nh2-Terminal Nucleotide Binding Domain. Journal of General Physiology, 2000, 116, 163-180.	0.9	73
53	Cftr Channel Gating. Journal of General Physiology, 1999, 114, 49-54.	0.9	8