Da-wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528553/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The cost of corrosion in China. Npj Materials Degradation, 2017, 1, .	5.8	652
2	Materials science: Share corrosion data. Nature, 2015, 527, 441-442.	27.8	557
3	Self-healing mechanisms in smart protective coatings: A review. Corrosion Science, 2018, 144, 74-88.	6.6	543
4	Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 2017, 5, 2355-2364.	10.3	413
5	Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology, 2018, 34, 1713-1718.	10.7	326
6	Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. Journal of Coatings Technology Research, 2016, 13, 11-29.	2.5	296
7	Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon, 2019, 142, 164-176.	10.3	204
8	Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corrosion Science, 2017, 129, 82-90.	6.6	197
9	Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments. Corrosion Science, 2016, 103, 230-241.	6.6	189
10	One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corrosion Science, 2019, 147, 9-21.	6.6	187
11	Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chemical Engineering Journal, 2018, 348, 940-951.	12.7	186
12	A bioactive "self-fitting―shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomaterialia, 2014, 10, 4597-4605.	8.3	154
13	Triple-Action Self-Healing Protective Coatings Based on Shape Memory Polymers Containing Dual-Function Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 23369-23379.	8.0	152
14	Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corrosion Science, 2018, 138, 96-104.	6.6	146
15	Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets. Journal of Hazardous Materials, 2019, 364, 244-255.	12.4	143
16	Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 113, 1-8.	4.6	138
17	Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys. Journal of Materials Science and Technology, 2020, 46, 64-73.	10.7	138
18	Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chemical Engineering Journal, 2021, 404, 127118.	12.7	122

#	Article	IF	CITATIONS
19	Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. Corrosion Science, 2016, 111, 811-821.	6.6	110
20	POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating. Chemical Engineering Journal, 2020, 383, 123160.	12.7	109
21	Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 127, 1-9.	3.9	108
22	Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications. Composites Science and Technology, 2019, 181, 107696.	7.8	105
23	Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying. Surface and Coatings Technology, 2018, 341, 15-23.	4.8	99
24	A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications. Chemical Engineering Journal, 2021, 423, 130238.	12.7	98
25	Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. Journal of Materials Science and Technology, 2018, 34, 1325-1336.	10.7	90
26	Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corrosion Science, 2020, 170, 108697.	6.6	82
27	Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review. Chemical Engineering Journal, 2021, 421, 127854.	12.7	81
28	Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports, 2016, 6, 20190.	3.3	80
29	Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Applied Materials & Interfaces, 2019, 11, 21822-21829.	8.0	77
30	Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria. Corrosion Science, 2020, 173, 108746.	6.6	74
31	pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 18-26.	4.7	72
32	Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution. Corrosion Science, 2014, 87, 224-232.	6.6	71
33	Shape memory composite (SMC) self-healing coatings for corrosion protection. Progress in Organic Coatings, 2016, 97, 261-268.	3.9	68
34	Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corrosion Science, 2018, 145, 151-161.	6.6	67
35	Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa. Corrosion Science, 2020, 165, 108390.	6.6	67
36	Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Materials Science and Engineering C, 2017, 80, 566-577.	7.3	66

#	Article	IF	CITATIONS
37	Cu nanoparticles derived from CuO electrodes in lithium cells. Nanotechnology, 2005, 16, 2338-2341.	2.6	65
38	pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 1-8.	4.7	65
39	Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa. Corrosion Science, 2020, 164, 108355.	6.6	65
40	Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Research, 2022, 219, 118553.	11.3	63
41	Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Bioelectrochemistry, 2021, 141, 107883.	4.6	58
42	Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection. Corrosion Science, 2021, 187, 109485.	6.6	56
43	Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels. Corrosion Science, 2021, 179, 109150.	6.6	55
44	Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property. Materials and Design, 2020, 185, 108236.	7.0	54
45	Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 2018, 121, 18-26.	4.6	53
46	Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method. Npj Materials Degradation, 2022, 6, .	5.8	53
47	Inorganic–Organic Shape Memory Polymer (SMP) Foams with Highly Tunable Properties. ACS Applied Materials & Interfaces, 2013, 5, 186-191.	8.0	50
48	Effect of Surface Microstructures on Hydrophobicity and Barrier Property of Anticorrosive Coatings Prepared by Soft Lithography. Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.8	50
49	Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating. Chemical Engineering Journal, 2022, 433, 134515.	12.7	50
50	Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel. Corrosion Science, 2020, 166, 108463.	6.6	48
51	Effect of carbon nanotubes on the corrosion resistance of water-borne acrylic coatings. Progress in Organic Coatings, 2017, 110, 182-186.	3.9	47
52	Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels. Chemical Engineering Journal, 2019, 368, 138-147.	12.7	47
53	Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances. ACS Applied Materials & amp; Interfaces, 2021, 13, 47272-47282.	8.0	47
54	Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 221-236.	4.7	46

#	Article	IF	CITATIONS
55	Self-healing corrosion protective coatings based on micro/nanocarriers: A review. Corrosion Communications, 2021, 1, 18-25.	6.0	46
56	Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials, 2021, 2, .	6.9	46
57	Reviewing machine learning of corrosion prediction in a data-oriented perspective. Npj Materials Degradation, 2022, 6, .	5.8	45
58	Prediction and Knowledge Mining of Outdoor Atmospheric Corrosion Rates of Low Alloy Steels Based on the Random Forests Approach. Metals, 2019, 9, 383.	2.3	44
59	Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions. Applied Surface Science, 2019, 465, 267-278.	6.1	42
60	Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. Corrosion Science, 2021, 178, 109084.	6.6	42
61	New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel. Journal of Materials Science and Technology, 2022, 124, 141-149.	10.7	42
62	Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings. Journal of Materials Science, 2021, 56, 10108-10123.	3.7	41
63	Porous inorganic–organic shape memory polymers. Polymer, 2012, 53, 2935-2941.	3.8	38
64	Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chemical Engineering Journal, 2020, 399, 125878.	12.7	38
65	POSS-tetraaniline based giant molecule: Synthesis, self-assembly, and active corrosion protection of epoxy-based organic coatings. Corrosion Science, 2020, 168, 108555.	6.6	37
66	Photothermal and pH dual-responsive self-healing coating for smart corrosion protection. Journal of Materials Science and Technology, 2022, 107, 34-42.	10.7	37
67	Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: Salty dust and diurnal temperature difference. Chemical Engineering Journal, 2018, 336, 92-101.	12.7	36
68	Detection of corrosion inhibitor adsorption via a surface-enhanced Raman spectroscopy (SERS) silver nanorods tape sensor. Sensors and Actuators B: Chemical, 2020, 321, 128617.	7.8	36
69	Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm. Corrosion Science, 2022, 199, 110159.	6.6	36
70	Data mining to online galvanic current of zinc/copper Internet atmospheric corrosion monitor. Corrosion Science, 2018, 133, 443-450.	6.6	35
71	Bias design of amorphous/nanocrystalline Cr Al Si N films for remarkable anti-corrosion and anti-wear performances in seawater. Tribology International, 2018, 121, 410-419.	5.9	33
72	Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: a review. Journal of Coatings Technology Research, 2019, 16, 1-13.	2.5	32

#	Article	lF	CITATIONS
73	Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. Journal of Materials Science and Technology, 2021, 64, 214-221.	10.7	32
74	Anti-corrosion properties of oligoaniline modified silica hybrid coatings for low-carbon steel. Synthetic Metals, 2018, 235, 61-70.	3.9	30
75	d-Cysteine functionalised silver nanoparticles surface with a "disperse-then-kill―antibacterial synergy. Chemical Engineering Journal, 2020, 381, 122662.	12.7	29
76	Saline-responsive triple-action self-healing coating for intelligent corrosion control. Materials and Design, 2022, 214, 110381.	7.0	29
77	Responses of soil microbiome to steel corrosion. Npj Biofilms and Microbiomes, 2021, 7, 6.	6.4	28
78	Recent Advances in Scanning Electrochemical Microscopy for Biological Applications. Materials, 2018, 11, 1389.	2.9	26
79	Accelerating effect of catalase on microbiologically influenced corrosion of 304 stainless steel by the halophilic archaeon Natronorubrum tibetense. Corrosion Science, 2021, 178, 109057.	6.6	26
80	Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Bioelectrochemistry, 2020, 133, 107477.	4.6	25
81	Photothermally activated self-healing protective coating based on the "close and seal―dual-action mechanisms. Composites Part B: Engineering, 2022, 231, 109574.	12.0	24
82	Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength. Journal of Materials Science and Technology, 2022, 101, 18-27.	10.7	23
83	Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens. Npj Materials Degradation, 2021, 5, .	5.8	23
84	Smart protective coatings with selfâ€sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers. Corrosion Science, 2022, 200, 110254.	6.6	23
85	Effect of Dissolved Oxygen Concentration on the Microbiologically Influenced Corrosion of Q235 Carbon Steel by Halophilic Archaeon Natronorubrum tibetense. Frontiers in Microbiology, 2019, 10, 844.	3.5	22
86	Design of novel superhydrophobic aniline trimer modified siliceous material and its application for steel protection. Applied Surface Science, 2018, 457, 752-763.	6.1	21
87	Effect of interlayer design on friction and wear behaviors of CrAlSiN coating under high load in seawater. RSC Advances, 2018, 8, 5596-5607.	3.6	20
88	Preparation and Characterization of Polyelectrolyte-Modified Attapulgite as Nanocontainers for Protection of Carbon Steel. Journal of the Electrochemical Society, 2018, 165, C907-C915.	2.9	20
89	Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense. Journal of Materials Science and Technology, 2020, 46, 12-20.	10.7	20
90	Qualitative and quantitative detection of corrosion inhibitors using surface-enhanced Raman scattering coupled with multivariate analysis. Applied Surface Science, 2021, 568, 150967.	6.1	20

#	Article	IF	CITATIONS
91	Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2022, 146, 108130.	4.6	20
92	Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property. Materials, 2017, 10, 628.	2.9	19
93	The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1. Bioelectrochemistry, 2022, 147, 108173.	4.6	19
94	Preparation and evaluation of intelligent corrosion inhibitor based on photo-crosslinked pH-sensitive hydrogels. Materials Letters, 2015, 160, 480-483.	2.6	18
95	Effects of Cu-content and passivation treatment on the corrosion resistance of Al0.3Cu CoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2022, 920, 165956.	5.5	18
96	Application of An Electrical Resistance Sensor-Based Automated Corrosion Monitor in the Study of Atmospheric Corrosion. Materials, 2019, 12, 1065.	2.9	17
97	Magnetically responsive lubricant-infused porous surfaces with controllable lubricity and durable anti-icing performance. Surface and Coatings Technology, 2021, 406, 126742.	4.8	17
98	Facile fabrication of slippery lubricant-infused porous surface with pressure responsive property for anti-icing application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126457.	4.7	17
99	Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold. Journal of Visualized Experiments, 2015, , e52981.	0.3	16
100	An infrastructure with user-centered presentation data model for integrated management of materials data and services. Npj Computational Materials, 2021, 7, .	8.7	15
101	The role of surface morphology in the barrier properties of epoxy coatings in different corrosion environments. Progress in Organic Coatings, 2017, 104, 199-209.	3.9	14
102	Understanding of the corrosion protection by V(IV) conversion coatings from a sol-gel perspective. Corrosion Science, 2019, 161, 108196.	6.6	14
103	Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments. Journal of Materials Science and Technology, 2021, 89, 233-241.	10.7	14
104	Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution. Journal of Materials Science and Technology, 2021, 64, 57-65.	10.7	14
105	Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense. Bioelectrochemistry, 2021, 140, 107746.	4.6	14
106	Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina. Bioelectrochemistry, 2020, 136, 107635.	4.6	13
107	Effect of polyaniline-based plate on the anticorrosion performance of epoxy coating. Progress in Organic Coatings, 2021, 151, 106109.	3.9	13
108	Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens. Corrosion Science, 2022, 196, 110067.	6.6	12

#	Article	IF	CITATIONS
109	A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater. Surface Topography: Metrology and Properties, 2018, 6, 014004.	1.6	11
110	Electrochemical Behavior and Stress Corrosion Sensitivity of X70 Steel Under Disbonded Coatings in Korla Soil Solution. Journal of Materials Engineering and Performance, 2016, 25, 4657-4665.	2.5	10
111	Corrosion Acceleration of Printed Circuit Boards With an Immersion Silver Layer Exposed to Bacillus cereus in an Aerobic Medium. Frontiers in Microbiology, 2019, 10, 1493.	3.5	10
112	Antibacterial <scp>selfâ€healing</scp> anticorrosion coatings from single capsule system. Journal of Applied Polymer Science, 2021, 138, 51214.	2.6	9
113	Anti-corrosion performance of aniline trimer-containing sol–gel hybrid coatings for mild steel substrate. Journal of Sol-Gel Science and Technology, 2018, 87, 464-477.	2.4	6
114	Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG1000 as an additive. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
115	Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina. Acta Metallurgica Sinica (English Letters), 0, , 1.	2.9	3
116	pH-responsive d-leucine functional multilayer films with antibacterial and anti-adhesion synergistic properties. Materials Today Communications, 2021, 28, 102691.	1.9	3
117	pH-Responsive Allicin-Based Coatings With Antibacterial and Antifouling Effects in Marine Environments. Frontiers in Materials, 2022, 9, .	2.4	3
118	Corrosion Inhibition and Adsorption Process of 3-Amino-5-Mercapto-1,2,4-Triazole on Aluminium Alloy: Experimental and Theoretical Studies. Frontiers in Materials, 2022, 9, .	2.4	3