
Darcy S Reisman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interlimb Coordination During Locomotion: What Can be Adapted and Stored?. Journal of Neurophysiology, 2005, 94, 2403-2415.	1.8	471
2	Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain, 2007, 130, 1861-1872.	7.6	435
3	Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke. Neurorehabilitation and Neural Repair, 2009, 23, 735-744.	2.9	259
4	Repeated Split-Belt Treadmill Training Improves Poststroke Step Length Asymmetry. Neurorehabilitation and Neural Repair, 2013, 27, 460-468.	2.9	236
5	Neurophysiologic and Rehabilitation Insights From the Split-Belt and Other Locomotor Adaptation Paradigms. Physical Therapy, 2010, 90, 187-195.	2.4	149
6	Walking Speed and Step Length Asymmetry Modify the Energy Cost of Walking After Stroke. Neurorehabilitation and Neural Repair, 2015, 29, 416-423.	2.9	143
7	Functional Electrical Stimulation of Ankle Plantarflexor and Dorsiflexor Muscles. Stroke, 2009, 40, 3821-3827.	2.0	127
8	Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke. Physical Therapy, 2010, 90, 55-66.	2.4	101
9	Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait and Posture, 2011, 33, 314-317.	1.4	100
10	Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait and Posture, 2011, 33, 309-313.	1.4	91
11	Influence of Speed on Walking Economy Poststroke. Neurorehabilitation and Neural Repair, 2009, 23, 529-534.	2.9	75
12	The Split-Belt Walking Paradigm. Physical Medicine and Rehabilitation Clinics of North America, 2015, 26, 703-713.	1.3	74
13	Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke. Neurorehabilitation and Neural Repair, 2015, 29, 499-508.	2.9	73
14	Split-Belt Treadmill Training Poststroke. Journal of Neurologic Physical Therapy, 2010, 34, 202-207.	1.4	69
15	Targeting Paretic Propulsion to Improve Poststroke Walking Function: A Preliminary Study. Archives of Physical Medicine and Rehabilitation, 2014, 95, 840-848.	0.9	69
16	Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. Journal of Applied Physiology, 2019, 126, 431-443.	2.5	64
17	A step activity monitoring program improves real world walking activity post stroke. Disability and Rehabilitation, 2014, 36, 2233-2236.	1.8	54
18	Combining Fast-Walking Training and a Step Activity Monitoring Program to Improve Daily Walking Activity After Stroke: A Preliminary Study. Archives of Physical Medicine and Rehabilitation, 2016, 97, S185-S193.	0.9	45

DARCY S REISMAN

#	Article	IF	CITATIONS
19	A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes. Journal of Physiology, 2018, 596, 1999-2016.	2.9	40
20	The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiology of Learning and Memory, 2017, 144, 77-85.	1.9	37
21	Updates in Motor Learning: Implications for Physical Therapist Practice and Education. Physical Therapy, 2022, 102, .	2.4	36
22	The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke. Experimental Brain Research, 2016, 234, 341-351.	1.5	30
23	Learning the spatial features of a locomotor task is slowed after stroke. Journal of Neurophysiology, 2014, 112, 480-489.	1.8	28
24	A locomotor learning paradigm using distorted visual feedback elicits strategic learning. Journal of Neurophysiology, 2018, 120, 1923-1931.	1.8	23
25	The feasibility of an acute high-intensity exercise bout to promote locomotor learning after stroke. Topics in Stroke Rehabilitation, 2018, 25, 83-89.	1.9	20
26	Social and physical environmental factors in daily stepping activity in those with chronic stroke. Topics in Stroke Rehabilitation, 2021, 28, 161-169.	1.9	20
27	Beyond Physical Capacity: Factors Associated With Real-world Walking Activity After Stroke. Archives of Physical Medicine and Rehabilitation, 2021, 102, 1880-1887.e1.	0.9	17
28	Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry. Journal of Neurophysiology, 2020, 124, 32-39.	1.8	17
29	Locomotor adaptation is influenced by the interaction between perturbation and baseline asymmetry after stroke. Journal of Biomechanics, 2015, 48, 2849-2857.	2.1	16
30	Locomotor training intensity after stroke: Effects of interval type and mode. Topics in Stroke Rehabilitation, 2020, 27, 483-493.	1.9	16
31	A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Experimental Brain Research, 2019, 237, 2799-2810.	1.5	15
32	A short bout of high-intensity exercise alters ipsilesional motor cortical excitability post-stroke. Topics in Stroke Rehabilitation, 2019, 26, 405-411.	1.9	13
33	Walking speed changes in response to user-driven treadmill control after stroke. Journal of Biomechanics, 2020, 101, 109643.	2.1	13
34	The relationship between BDNF Val66Met polymorphism and functional mobility in chronic stroke survivors. Topics in Stroke Rehabilitation, 2018, 25, 276-280.	1.9	12
35	Fluid Cognitive Abilities Are Important for Learning and Retention of a New, Explicitly Learned Walking Pattern in Individuals After Stroke. Neurorehabilitation and Neural Repair, 2021, 35, 419-430.	2.9	12
36	Preliminary Outcomes of Combined Treadmill and Overground High-Intensity Interval Training in Ambulatory Chronic Stroke. Frontiers in Neurology, 2022, 13, 812875.	2.4	11

DARCY S REISMAN

#	Article	IF	CITATIONS
37	Changes in Predicted Muscle Coordination with Subject-Specific Muscle Parameters for Individuals after Stroke. Stroke Research and Treatment, 2014, 2014, 1-7.	0.8	9
38	Anterior fall-recovery training applied to individuals with chronic stroke. Clinical Biomechanics, 2019, 69, 205-214.	1.2	8
39	Depressive Symptoms Moderate the Relationship Among Physical Capacity, Balance Self-Efficacy, and Participation in People After Stroke. Physical Therapy, 2021, 101, .	2.4	6
40	Deficits in Surface Force Production During Seated Reaching in People After Stroke. Physical Therapy, 2007, 87, 326-336.	2.4	4
41	Posterior fall-recovery training applied to individuals with chronic stroke: A single-group intervention study. Clinical Biomechanics, 2021, 82, 105249.	1.2	2
42	Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke. Journal of Biomechanics, 2021, 124, 110480.	2.1	2
43	Fluid Cognition Relates to Locomotor Switching in Neurotypical Adults, Not Individuals After Stroke. Journal of Neurologic Physical Therapy, 2021, Publish Ahead of Print, .	1.4	Ο