List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6, 591-595.	31.4	3,583
2	Simultaneous Enhancement of Openâ€Circuit Voltage, Shortâ€Circuit Current Density, and Fill Factor in Polymer Solar Cells. Advanced Materials, 2011, 23, 4636-4643.	21.0	2,000
3	Pyridineâ€Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs. Advanced Materials, 2008, 20, 2125-2130.	21.0	590
4	Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. Chemistry of Materials, 2008, 20, 1691-1693.	6.7	491
5	Marching Toward Highly Efficient, Pureâ€Blue, and Stable Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1802558.	14.9	489
6	Achieving Highâ€Performance Nondoped OLEDs with Extremely Small Efficiency Rollâ€Off by Combining Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2017, 27, 1606458.	14.9	386
7	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	14.9	381
8	Ultra High Efficiency Green Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2007, 46, L10-L12.	1.5	351
9	Nearly 100% Internal Quantum Efficiency in an Organic Blueâ€Light Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap. Advanced Materials, 2009, 21, 1271-1274.	21.0	347
10	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition, 2017, 56, 12971-12976.	13.8	320
11	Perovskite Lightâ€Emitting Diodes with EQE Exceeding 28% through a Synergetic Dualâ€Additive Strategy for Defect Passivation and Nanostructure Regulation. Advanced Materials, 2021, 33, e2103268.	21.0	320
12	Highly Efficient Organic Blueâ€and Whiteâ€Lightâ€Emitting Devices Having a Carrier―and Excitonâ€Confining Structure for Reduced Efficiency Rollâ€Off. Advanced Materials, 2008, 20, 4189-4194.	21.0	300
13	Evaporation―and Solutionâ€Processâ€Feasible Highly Efficient Thianthreneâ€9,9′,10,10′â€Tetraoxideâ€Ba Thermally Activated Delayed Fluorescence Emitters with Reduced Efficiency Rollâ€Off. Advanced Materials, 2016, 28, 181-187.	ased 21.0	291
14	Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet–Singlet Intersystem Crossing. Advanced Materials, 2019, 31, e1807388.	21.0	288
15	RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chemistry of Materials, 2011, 23, 274-284.	6.7	251
16	Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chemistry of Materials, 2008, 20, 5951-5953.	6.7	242
17	Highâ€Performance Colorâ€Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film. Advanced Materials, 2017, 29, 1603157.	21.0	218
18	Robust Luminescent Materials with Prominent Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence for High-Performance Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 3623-3631.	6.7	215

#	Article	IF	CITATIONS
19	"Rate-limited effect―of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chemical Science, 2016, 7, 4264-4275.	7.4	212
20	Solution-processed bulk heterojunction solar cells based on a porphyrin small molecule with 7% power conversion efficiency. Energy and Environmental Science, 2014, 7, 1397-1401.	30.8	200
21	Triâ€Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie - International Edition, 2019, 58, 11301-11305.	13.8	198
22	Structure–Property Relationship of Pyridine ontaining Triphenyl Benzene Electronâ€Transport Materials for Highly Efficient Blue Phosphorescent OLEDs. Advanced Functional Materials, 2009, 19, 1260-1267.	14.9	190
23	Tuning Energy Levels of Electronâ€Transport Materials by Nitrogen Orientation for Electrophosphorescent Devices with an â€~Ideal' Operating Voltage. Advanced Materials, 2010, 22, 3311-3316.	21.0	166
24	Design Strategy of Blue and Yellow Thermally Activated Delayed Fluorescence Emitters and Their Allâ€Fluorescence White OLEDs with External Quantum Efficiency beyond 20%. Advanced Functional Materials, 2016, 26, 6904-6912.	14.9	164
25	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	6.7	164
26	Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. Journal of Materials Chemistry C, 2014, 2, 9565-9578.	5.5	152
27	Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching?. Materials Chemistry Frontiers, 2017, 1, 1125-1129.	5.9	150
28	Singlet–Triplet Splitting Energy Management via Acceptor Substitution: Complanation Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters and Organic Lightâ€Emitting Diodes Application. Advanced Functional Materials, 2016, 26, 8042-8052.	14.9	141
29	2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chemical Communications, 2008, , 5821.	4.1	130
30	Novel "Hot Exciton―Blue Fluorophores for High Performance Fluorescent/Phosphorescent Hybrid White Organic Light-Emitting Diodes with Superhigh Phosphorescent Dopant Concentration and Improved Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2015, 7, 7869-7877.	8.0	128
31	Pyridine ontaining Electronâ€Transport Materials for Highly Efficient Blue Phosphorescent OLEDs with Ultralow Operating Voltage and Reduced Efficiency Rollâ€Off. Advanced Functional Materials, 2014, 24, 3268-3275.	14.9	127
32	Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization. ACS Applied Materials & Interfaces, 2016, 8, 3041-3049.	8.0	126
33	Novel Four-Pyridylbenzene-Armed Biphenyls as Electron-Transport Materials for Phosphorescent OLEDs. Organic Letters, 2008, 10, 941-944.	4.6	125
34	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€c:5,6â€c]bis(2â€octylâ€{1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	21.0	125
35	Highâ€Efficiency WOLEDs with High Colorâ€Rendering Index based on a Chromaticityâ€Adjustable Yellow Thermally Activated Delayed Fluorescence Emitter. Advanced Materials, 2016, 28, 4614-4619.	21.0	120
36	Fluorescent Organic Planar pn Heterojunction Lightâ€Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency. Advanced Materials, 2016, 28, 239-244.	21.0	115

#	Article	IF	CITATIONS
37	Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chemical Communications, 2015, 51, 16353-16356.	4.1	112
38	Adamantane‣ubstituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2019, 58, 582-586.	13.8	111
39	Highly Efficient Spiro[fluorene-9,9â€2-thioxanthene] Core Derived Blue Emitters and Fluorescent/Phosphorescent Hybrid White Organic Light-Emitting Diodes. Chemistry of Materials, 2015, 27, 1100-1109.	6.7	107
40	"Tradeâ€Off―Hidden in Condensed State Solvation: Multiradiative Channels Design for Highly Efficient Solutionâ€Processed Purely Organic Electroluminescence at High Brightness. Advanced Functional Materials, 2018, 28, 1704927.	14.9	105
41	Recombination Dynamics Study on Nanostructured Perovskite Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801370.	21.0	102
42	Utilizing a Spiro TADF Moiety as a Functional Electron Donor in TADF Molecular Design toward Efficient "Multichannel―Reverse Intersystem Crossing. Advanced Functional Materials, 2019, 29, 1808088.	14.9	101
43	Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2013, 3, 718-723.	19.5	92
44	Study of Configuration Differentia and Highly Efficient, Deepâ€Blue, Organic Lightâ€Emitting Diodes Based on Novel Naphtho[1,2â€ <i>d</i>]imidazole Derivatives. Advanced Functional Materials, 2015, 25, 5190-5198.	14.9	91
45	Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.	8.0	91
46	Structure–Performance Investigation of Thioxanthone Derivatives for Developing Color Tunable Highly Efficient Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2016, 8, 8627-8636.	8.0	89
47	Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 3447.	6.7	88
48	High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2011, 12, 843-850.	2.6	86
49	Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2021, 13, 5302-5311.	8.0	78
50	Modulation of Exciton Generation in Organic Active Planar pn Heterojunction: Toward Low Driving Voltage and Highâ€Efficiency OLEDs Employing Conventional and Thermally Activated Delayed Fluorescent Emitters. Advanced Materials, 2016, 28, 6758-6765.	21.0	77
51	Dinuclear platinum complexes containing aryl-isoquinoline and oxadiazole-thiol with an efficiency of over 8.8%: in-depth investigation of the relationship between their molecular structure and near-infrared electroluminescent properties in PLEDs. Journal of Materials Chemistry C, 2016, 4, 6007-6015.	5.5	76
52	Highly Emissive Dinuclear Platinum(III) Complexes. Journal of the American Chemical Society, 2020, 142, 7469-7479.	13.7	76
53	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 13522-13531.	13.8	72
54	Efficient Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes Based on Donor–Acceptor Architecture: An Improved Emissive State from Mixing to Hybridization. Advanced Optical Materials, 2017, 5, 1700441.	7.3	71

#	Article	IF	CITATIONS
55	Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 2690-2695.	5.5	69
56	Achieving Efficient Triplet Exciton Utilization with Large Δ <i>E</i> _{ST} and Nonobvious Delayed Fluorescence by Adjusting Excited State Energy Levels. Journal of Physical Chemistry Letters, 2018, 9, 4725-4731.	4.6	69
57	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of the Multiple Resonance Parent Core. Angewandte Chemie - International Edition, 2022, 61, .	13.8	66
58	An ideal universal host for highly efficient full-color, white phosphorescent and TADF OLEDs with a simple and unified structure. Journal of Materials Chemistry C, 2017, 5, 10406-10416.	5.5	63
59	Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis. Journal of Materials Chemistry C, 2017, 5, 5223-5231.	5.5	62
60	Twist Angle and Rotation Freedom Effects on Luminescent Donor–Acceptor Materials: Crystal Structures, Photophysical Properties, and OLED Application. Advanced Optical Materials, 2016, 4, 2109-2118.	7.3	61
61	Polarity-Tunable Host Materials and Their Applications in Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 27920-27930.	8.0	59
62	<i>De novo</i> design of D–Ïf–A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070.	7.4	58
63	A host material with a small singlet–triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission. Organic Electronics, 2012, 13, 1937-1947.	2.6	57
64	Non-noble-metal-based organic emitters for OLED applications. Materials Science and Engineering Reports, 2020, 142, 100581.	31.8	55
65	Efficient exciplex organic light-emitting diodes with a bipolar acceptor. Organic Electronics, 2015, 25, 79-84.	2.6	53
66	J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 2717-2723.	8.0	52
67	Coâ€Interlayer Engineering toward Efficient Green Quasiâ€Twoâ€Dimensional Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910167.	14.9	52
68	Highly efficient thermally activated delayed fluorescence materials with reduced efficiency roll-off and low on-set voltages. Materials Chemistry Frontiers, 2017, 1, 2039-2046.	5.9	49
69	Deep blue fluorophores incorporating sulfone-locked triphenylamine: the key for highly efficient fluorescence–phosphorescence hybrid white OLEDs with simplified structure. Journal of Materials Chemistry C, 2015, 3, 6986-6996.	5.5	48
70	Optically Active Polyaniline Derivatives Prepared by Electron Acceptor in Organic System:  Chiroptical Properties. Macromolecules, 2001, 34, 7249-7256.	4.8	47
71	Achieving Purely Organic Room-Temperature Phosphorescence Mediated by a Host–Guest Charge Transfer State. Journal of Physical Chemistry Letters, 2021, 12, 4600-4608.	4.6	47
72	Near-infrared emitting pyrazole-bridged binuclear platinum complexes: Synthesis, photophysical and electroluminescent properties in PLEDs. Dyes and Pigments, 2016, 128, 68-74.	3.7	46

#	Article	IF	CITATIONS
73	Hybrid Heterocycle-Containing Electron-Transport Materials Synthesized by Regioselective Suzuki Cross-Coupling Reactions for Highly Efficient Phosphorescent OLEDs with Unprecedented Low Operating Voltage. Chemistry of Materials, 2012, 24, 3817-3827.	6.7	45
74	Excitonâ€Adjustable Interlayers for High Efficiency, Low Efficiency Rollâ€Off, and Lifetime Improved Warm White Organic Lightâ€Emitting Diodes (WOLEDs) Based on a Delayed Fluorescence Assistant Host. Advanced Functional Materials, 2018, 28, 1706922.	14.9	45
75	Novel Cathode Interlayers Based on Neutral Alcoholâ€Soluble Small Molecules with a Triphenylamine Core Featuring Polar Phosphonate Side Chains for Highâ€Performance Polymer Lightâ€Emitting and Photovoltaic Devices. Macromolecular Rapid Communications, 2013, 34, 595-603.	3.9	44
76	An Effective Strategy toward Highâ€Efficiency Fluorescent OLEDs by Radiative Coupling of Spatially Separated Electron–Hole Pairs. Advanced Materials Interfaces, 2018, 5, 1800025.	3.7	44
77	Efficient near-infrared emission based on donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Dyes and Pigments, 2018, 149, 430-436.	3.7	44
78	Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 3387.	10.3	43
79	Achieving Enhanced Thermally Activated Delayed Fluorescence Rates and Shortened Exciton Lifetimes by Constructing Intramolecular Hydrogen Bonding Channels. ACS Applied Materials & Interfaces, 2019, 11, 45999-46007.	8.0	43
80	lridium(<scp>iii</scp>) phosphors with rigid fused-heterocyclic chelating architectures for efficient deep-red/near-infrared emissions in polymer light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 10961-10971.	5.5	42
81	Predicting Operational Stability for Organic Lightâ€Emitting Diodes with Exciplex Cohosts. Advanced Science, 2019, 6, 1802246.	11.2	42
82	Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.	6.8	40
83	Highly efficient single- and multi-emission-layer fluorescent/phosphorescent hybrid white organic light-emitting diodes with â^1⁄420% external quantum efficiency. Journal of Materials Chemistry C, 2015, 3, 9233-9239.	5.5	40
84	Rh(<scp>iii</scp>)-catalyzed relay carbenoid functionalization of aromatic C–H bonds: access to ï€-conjugated fused heteroarenes. Chemical Communications, 2016, 52, 5856-5859.	4.1	40
85	Near-infrared emission from binuclear platinum (II) complexes containing pyrenylpyridine and pyridylthiolate units: Synthesis, photo-physical and electroluminescent properties. Dyes and Pigments, 2017, 138, 162-168.	3.7	40
86	Molecular isomeric engineering of naphthyl-quinoline-containing dinuclear platinum complexes to tune emission from deep red to near infrared. Journal of Materials Chemistry C, 2019, 7, 630-638.	5.5	39
87	Reversible switching between normal and thermally activated delayed fluorescence towards "smart― and single compound white-light luminescence via controllable conformational distribution. Science China Chemistry, 2018, 61, 677-686.	8.2	37
88	Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes <i>via</i> FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295-1303.	5.6	36
89	Nanosecond-time-scale delayed fluorescence towards fast triplet-singlet spin conversion for efficient orange-red OLEDs with negligible efficiency roll-off. Chemical Engineering Journal, 2021, 415, 128949.	12.7	36
90	Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic ester substitution of phenoxathiine. Chemical Communications, 2019, 55, 7215-7218.	4.1	35

#	Article	IF	CITATIONS
91	9,9-Diphenyl-thioxanthene derivatives as host materials for highly efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 9999-10006.	5.5	34
92	Benzotriazole-containing donor–acceptor–acceptor type cyclometalated iridium(III) complex for solution-processed near-infrared polymer light emitting diodes. Dyes and Pigments, 2016, 131, 231-238.	3.7	34
93	Modulation of Aggregationâ€Induced Emission and Electroluminescence of Silole Derivatives by a Covalent Bonding Pattern. Chemistry - A European Journal, 2015, 21, 8137-8147.	3.3	33
94	Highly-efficient hybrid white organic light-emitting diodes based on a high radiative exciton ratio deep-blue emitter with improved concentration of phosphorescent dopant. RSC Advances, 2015, 5, 32298-32306.	3.6	33
95	Dinuclear platinum(<scp>ii</scp>) complex dominated by a zig-zag-type cyclometalated ligand: a new approach to realize high-efficiency near infrared emission. Journal of Materials Chemistry C, 2018, 6, 5769-5777.	5.5	33
96	Quinazolineâ€Based Thermally Activated Delayed Fluorecence for Highâ€Performance OLEDs with External Quantum Efficiencies Exceeding 20%. Advanced Optical Materials, 2019, 7, 1801496.	7.3	33
97	Template synthesis of polyaniline in the presence of phosphomannan. Synthetic Metals, 2002, 129, 173-178.	3.9	32
98	Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 4004.	10.3	32
99	Pyridal[2,1,3]thiadiazole as strong electron-withdrawing and less sterically-hindered acceptor for highly efficient donor–acceptor type NIR materials. Journal of Materials Chemistry C, 2017, 5, 11053-11058.	5.5	32
100	Ternary Organic Solar Cells with Coumarin7 as the Donor Exhibiting Greater Than 10% Power Conversion Efficiency and a High Fill Factor of 75%. ACS Applied Materials & Interfaces, 2017, 9, 29907-29916.	8.0	32
101	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	4.1	32
102	Tetradentate Pt(II) Complexes for Spectrum‣table Deepâ€Blue and White Electroluminescence. Advanced Optical Materials, 2020, 8, 2000406.	7.3	31
103	Helix Inversion of Polyaniline by Introducing o-Toluidine Units. Macromolecules, 2002, 35, 5752-5757.	4.8	30
104	Rhodium(<scp>iii</scp>)-catalyzed indole-directed carbenoid aryl C–H insertion/cyclization: access to 1,2-benzocarbazoles. RSC Advances, 2017, 7, 30554-30558.	3.6	30
105	In Situ Synthesis of Optically Active Poly(o-ethoxyaniline) in Organic Media and Its Chiroptical Properties. Chemistry of Materials, 2001, 13, 4787-4793.	6.7	29
106	Structure-simplified and highly efficient deep blue organic light-emitting diodes with reduced efficiency roll-off at extremely high luminance. Chemical Communications, 2016, 52, 14454-14457.	4.1	29
107	Thiophene Disubstituted Benzothiadiazole Derivatives: An Effective Planarization Strategy Toward Deep-Red to Near-Infrared (NIR) Organic Light-Emitting Diodes. Frontiers in Chemistry, 2019, 7, 276.	3.6	29
108	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	5.5	28

#	Article	IF	CITATIONS
109	Triâ€Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie, 2019, 131, 11423-11427.	2.0	28
110	Bisâ€tridentate Ir ^{III} Phosphors Bearing Two Fused Fiveâ€5ixâ€Membered Metallacycles: A Strategy to Improved Photostability of Blue Emitters. Chemistry - A European Journal, 2019, 25, 15375-15386.	3.3	27
111	Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy. Chemical Science, 2021, 12, 13580-13587.	7.4	27
112	Photocatalyzed cycloaromatization of vinylsilanes with arylsulfonylazides. Nature Communications, 2021, 12, 3304.	12.8	27
113	Three pyrido[2,3,4,5-lmn]phenanthridine derivatives and their large band gap copolymers for organic solar cells. Journal of Materials Chemistry A, 2014, 2, 321-325.	10.3	26
114	Highly efficient blue and warm white organic light-emitting diodes with a simplified structure. Nanotechnology, 2016, 27, 124001.	2.6	26
115	Nonaromatic Amine Containing Exciplex for Thermally Activated Delayed Fluorescent Electroluminescence. Advanced Optical Materials, 2019, 7, 1801554.	7.3	26
116	High-performance and stable CsPbBr ₃ light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.	3.6	25
117	Highly Efficient Green Phosphorescent OLED Based on Pyridine-containing Starburst Electron-transporting Materials. Chemistry Letters, 2010, 39, 140-141.	1.3	24
118	Achieving near-infrared emission in platinum(<scp>ii</scp>) complexes by using an extended donor–acceptor-type ligand. Dalton Transactions, 2016, 45, 5071-5080.	3.3	24
119	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 13656-13665.	2.0	24
120	Pyridine-Based Bipolar Hosts for Solution-Processed Bluish-Green Thermally Activated Delayed Fluorescence Devices: A Subtle Regulation of Chemical Stability and Carrier Transportation. ACS Applied Materials & Interfaces, 2020, 12, 49905-49914.	8.0	24
121	Small molecular neutral microcrystalline iridium(<scp>iii</scp>) complexes as promising molecular oxygen sensors. Chemical Communications, 2015, 51, 1926-1929.	4.1	23
122	Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy. Journal of Materials Chemistry C, 2016, 4, 1482-1489.	5.5	23
123	Introduction of Twisted Backbone: A New Strategy to Achieve Efficient Blue Fluorescence Emitter with Delayed Emission. Advanced Optical Materials, 2017, 5, 1700334.	7.3	23
124	Efficient near-infrared emission of ï€-extended cyclometalated iridium complexes based on pyrene in solution-processed polymer light-emitting diode. Chemical Physics Letters, 2018, 699, 99-106.	2.6	23
125	Sky-blue thermally activated delayed fluorescence material employing a diphenylethyne acceptor for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 36-42.	5.5	23
126	Emission Wavelength Tuning via Competing Lattice Expansion and Octahedral Tilting for Efficient Red Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2106691.	14.9	23

#	Article	IF	CITATIONS
127	Pyrene terminal functionalized perylene diimide as non-fullerene acceptors for bulk heterojunction solar cells. RSC Advances, 2015, 5, 83155-83163.	3.6	22
128	Adamantaneâ€Substituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2019, 131, 592-596.	2.0	22
129	D–A–D-type orange-light emitting thermally activated delayed ï¬,uorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies. Beilstein Journal of Organic Chemistry, 2018, 14, 672-681.	2.2	22
130	Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates. Journal of Materials Chemistry C, 2021, 9, 1378-1386.	5.5	22
131	Iridium(iii) complexes with enhanced film amorphism as guests for efficient orange solution-processed single-layer PhOLEDs with low efficiency roll-off. Dalton Transactions, 2013, 42, 10559.	3.3	21
132	Tetradentate Pt(II) 3,6-substitued salophen complexes: Synthesis and tuning emission from deep-red to near infrared by appending donor-acceptor framework. Organic Electronics, 2017, 50, 317-324.	2.6	21
133	Highly efficient thermally activated delayed fluorescence yellow organic light-emitting diodes with a low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 8063-8069.	5.5	21
134	Efficient near-infrared emitting tetradentate bis-cyclometalated platinum (IV) complexes for solution-processed polymer light-emitting diodes. Dyes and Pigments, 2017, 142, 457-464.	3.7	19
135	Achieving NIR emission for tetradentate platinum (II) salophen complexes by attaching dual donor-accepter frameworks in the heads of salophen. Dyes and Pigments, 2017, 138, 100-106.	3.7	19
136	Synergetic Horizontal Dipole Orientation Induction for Highly Efficient and Spectral Stable Thermally Activated Delayed Fluorescence White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	19
137	Dual phosphorescence emission of dinuclear platinum(<scp>ii</scp>) complex incorporating cyclometallating pyrenyl-dipyridine-based ligand and its application in near-infrared solution-processed polymer light-emitting diodes. Dalton Transactions, 2017, 46, 16257-16268.	3.3	18
138	Tailoring Excited State Properties and Energy Levels Arrangement via Subtle Structural Design on Dâ€Ï€â€A Materials. Chinese Journal of Chemistry, 2017, 35, 1559-1568.	4.9	18
139	A chiral column core surrounded by peripheral emitting moieties: a novel strategy for constructing columnar liquid crystals with circularly polarized luminescence. Journal of Materials Chemistry C, 2022, 10, 5598-5607.	5.5	18
140	Synthesis and optoelectronic properties of amino-functionalized carbazole-based conjugated polymers. Science China Chemistry, 2013, 56, 1119-1128.	8.2	17
141	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	1.5	16
142	Thermally activated delayed fluorescence polymers for high-efficiency solution-processed non-doped OLEDs: Convenient synthesis by binding TADF units and host units to the pre-synthesized polycarbazole-based backbone via click reaction. Polymer, 2022, 240, 124468.	3.8	15
143	Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Science China Chemistry, 2014, 57, 973-981.	8.2	14
144	Engineering the excited-state properties of purely organic intramolecular and intermolecular charge transfer emitters towards high-performance fluorescent OLEDs. Journal of Materials Chemistry C, 2017, 5, 10991-11000.	5.5	14

#	Article	IF	CITATIONS
145	Perovskite/Organic Hybrid White Electroluminescent Devices with Stable Spectrum and Extended Operating Lifetime. ACS Energy Letters, 2022, 7, 523-532.	17.4	14
146	A "Flexible―Purely Organic Molecule Exhibiting Strong Spin–Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs. Journal of Physical Chemistry Letters, 2022, 13, 4971-4980.	4.6	14
147	Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 33606-33613.	8.0	14
148	Phenanthroline Derivatives for Electron-transport Layer in Organic Light-emitting Devices. Chemistry Letters, 2009, 38, 712-713.	1.3	13
149	A water-processable organic electron-selective layer for solution-processed inverted organic solar cells. Applied Physics Letters, 2014, 104, 053304.	3.3	12
150	Tuning color-correlated temperature and color rendering index of phosphorescent white polymer light-emitting diodes: Towards healthy solid-state lighting. Organic Electronics, 2016, 34, 18-22.	2.6	12
151	Manipulating the Molecular Backbone to Achieve Highly Emissive Skyâ€Blue AlEgens and Their Applications in Nondoped Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2018, 4, 1800354.	5.1	12
152	Triazole and Pyridine Hybrid Molecules as Electronâ€Transport Materials for Highly Efficient Green Phosphorescent Organic Lightâ€Emitting Diodes. Israel Journal of Chemistry, 2014, 54, 971-978.	2.3	11
153	Thermo-Responsive Nanofiber Mats Fabricated by Electrospinning of Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -stearyl acrylate). Journal of Nanoscience and Nanotechnology, 2011, 11, 5193-5198.	0.9	10
154	Spiro[fluorene-9,9â€~-thioxanthene] core based host materials for thermally activated delayed fluorescence devices. Dyes and Pigments, 2019, 163, 249-256.	3.7	10
155	Molecular and Device Design Strategies for Ideal Performance White Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1518-1530.	5.8	10
156	Calix[4]resorcinarene-based hyper-structured molecular thermally activated delayed fluorescence yellow-green emitters for non-doped OLEDs. Journal of Materials Chemistry C, 2020, 8, 4469-4476.	5.5	10
157	Donor-ï€-acceptor materials for robust electroluminescence performance based on hybridized local and charge-transfer state. Dyes and Pigments, 2021, 193, 109495.	3.7	10
158	"On-off―switch between red thermally activated delayed fluorescence and conventional fluorescence by isomeric regulation. Chemical Engineering Journal, 2021, 425, 131510.	12.7	10
159	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of Multiple Resonance Parent Core. Angewandte Chemie, 0, , .	2.0	10
160	Highly efficient orange and red organic light-emitting diodes with iridium(III) complexes bearing benzothiazole cyclometallate ligands as emitters. Thin Solid Films, 2012, 526, 231-236.	1.8	9
161	Organic clusters with time-dependent color-tunable dual persistent room-temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 15998-16005.	5.5	9
162	Color-tunable emission from violet-blue to pure-blue based on 5,9-disubstituted pyrene derivatives <i>via</i> engineering of aryl-side groups. Journal of Materials Chemistry C, 0, , .	5.5	9

#	Article	IF	CITATIONS
163	Highly efficient pure white polymer light-emitting devices based on poly(N-vinylcarbazole) doped with blue and red phosphorescent dyes. Science China Chemistry, 2011, 54, 671-677.	8.2	8
164	Solution-processed cathode-interlayer-free deep blue organic light-emitting diodes. Organic Electronics, 2014, 15, 1197-1204.	2.6	8
165	Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs. Optical Materials, 2016, 60, 244-251.	3.6	8
166	Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs. Electronic Materials Letters, 2018, 14, 89-100.	2.2	8
167	Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D–A Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 29528-29539.	8.0	8
168	Three-dimensional organic cage with narrowband delayed fluorescence. Science China Chemistry, 2020, 63, 897-903.	8.2	8
169	Ultralong room-temperature phosphorescence remarkably weakened by halogenation-induced molecular packing in hexaphenylmelamine derivatives. Chemical Communications, 2021, 57, 6177-6180.	4.1	8
170	Dinuclear cyclometalated platinum(<scp>ii</scp>) complexes containing a deep blue fluorescence chromophore: synthesis, photophysics and application in single dopant white PLEDs. Dalton Transactions, 2016, 45, 14131-14140.	3.3	7
171	Synthesis and optoelectronic properties of dinuclear cyclometalated platinum (II) complexes containing naphthalene-functionalized carbazole groups in the single-emissive-layer WPLEDs. Journal of Organometallic Chemistry, 2017, 835, 52-59.	1.8	7
172	Bimetal Cooperatively Catalyzed Arylalkynylation of Alkynylsilanes. Organic Letters, 2021, 23, 6724-6728.	4.6	7
173	The dibenzothiophene-S,S-dioxide and spirobifluorene based small molecules promote Low roll-off and Blue organic light-emitting diodes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111946.	3.9	6
174	Enhanced efficiency of thermally activated delayed fluorescence emitters by suitable substitution on isonicotinonitrile. Dyes and Pigments, 2019, 170, 107633.	3.7	6
175	Iridium Complexes Embedding Rigid D-A-Type Coordinated Cores: Facile Synthesis and High-Efficiency Near-Infrared Emission in Solution-Processed Polymer Light-Emitting Diodes. Journal of Organometallic Chemistry, 2021, 931, 121615.	1.8	6
176	Molecular Engineering of Sulfurâ€Bridged Polycyclic Emitters Towards Tunable TADF and RTP Electroluminescence. Angewandte Chemie, 2022, 134, .	2.0	6
177	Highly efficient non-doped single-layer blue organic light-emitting diodes based on light-emitting conjugated polymers containing trifluoren-2-ylamine and dibenzothiophene-S,S-dioxide. Synthetic Metals, 2015, 205, 228-235.	3.9	5
178	Enhanced performances of planar heterojunction organic light-emitting diodes <i>via</i> diluting an n-type transporter into a carbazole-based matrix. Journal of Materials Chemistry C, 2018, 6, 29-35.	5.5	5
179	Synthesis and Characterization of New Solution-Processable Red Iridium (III) Complexes Based on a Phenylation Strategy. Acta Chimica Sinica, 2017, 75, 367.	1.4	5
180	Multiple charge transfer disk-like emitters with fast fluorescence radiation rate and high horizontal dipole orientation for pure blue organic light-emitting diodes. Chemical Engineering Journal, 2022, 430, 133030.	12.7	5

#	Article	IF	CITATIONS
181	Conjugated polymers containing trifluoren-2-ylamine, trifluoren-2-ylbenzene and trifluoren-2-yltriazine for electroluminescence. Polymer, 2013, 54, 162-173.	3.8	4
182	Alternative Carrier Injection/Extraction Inspired by Electrode Interlayers Based on Peripheral Modification of the Electron-Rich Skeleton. ACS Applied Materials & Interfaces, 2015, 7, 3133-3141.	8.0	4
183	Bipolar fluorophores based on intramolecular charge-transfer moieties of sulfone for nondoped deep blue solution-processed organic light-emitting diodes. Dyes and Pigments, 2020, 176, 108242.	3.7	4
184	Efficient Zn-Alloyed Low-Toxicity Quasi-Two-Dimensional Pure-Red Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 55412-55419.	8.0	3
185	An effective approach for making solution-processable deep blue emitters via side chain modification. Optical Materials, 2020, 99, 109573.	3.6	2
186	Influence of fullerene-based acceptor materials on the performance of indacenodithiophene-cored small molecule bulk heterojunction organic solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 5006-5013.	2.2	1
187	Highly efficient and stable blue thermally activated delayed fluorescent organic light-emitting diodes. , 2022, , 117-191.		1
188	Efficient Green Quasi-Two-Dimensional Perovskite Light-Emitting Diodes Based on Mix-Interlayer. Frontiers in Chemistry, 2021, 9, 825822.	3.6	1
189	Single-component exciplex hosts for OLED application. Organic Electronics, 2022, 103, 106462.	2.6	1
190	19.1: Excitonâ€Adjustable Interlayers for Efficient and Lifetime Improved Warm White Organic Lightâ€Emitting Diodes Based on a Delayed Fluorescence Assistant Host. Digest of Technical Papers SID International Symposium, 2018, 49, 197-201.	0.3	0
191	Engineering the Excited-States of Intermolecular Charge Transfer Emitters Towards High-Performance OLEDs. , 2019, , .		0
192	73â€2: <i>Invited Paper:</i> Highâ€Efficiency Organic Lightâ€Emitting Diodes Based on Purely Organic Emitters. Digest of Technical Papers SID International Symposium, 2022, 53, 982-985.	0.3	0