
Raúl SÃ;nchez-Salguero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forest resilience to drought varies across biomes. Global Change Biology, 2018, 24, 2143-2158.	4.2	267
2	Selective drought-induced decline of pine species in southeastern Spain. Climatic Change, 2012, 113, 767-785.	1.7	156
3	Assessing forest vulnerability to climate warming using a processâ€based model of tree growth: bad prospects for rearâ€edges. Global Change Biology, 2017, 23, 2705-2719.	4.2	128
4	Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 662-667.	3.3	126
5	Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Global Change Biology, 2020, 26, 4521-4537.	4.2	105
6	Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	104
7	Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine. Forest Ecology and Management, 2015, 358, 12-25.	1.4	100
8	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	9.0	98
9	Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. Forest Ecology and Management, 2013, 310, 956-967.	1.4	97
10	Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. Forest Ecology and Management, 2012, 271, 158-169.	1.4	93
11	Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10142-E10150.	3.3	92
12	Growth response to climate and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. Annals of Forest Science, 2013, 70, 769-780.	0.8	86
13	Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in <i>Pinus pinaster</i> . Journal of Biogeography, 2018, 45, 1126-1139.	1.4	77
14	What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both?. Agricultural and Forest Meteorology, 2015, 206, 151-162.	1.9	76
15	Drought legacies are short, prevail in dry conifer forests and depend on growth variability. Journal of Ecology, 2020, 108, 2473-2484.	1.9	74
16	When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems, 2016, 19, 1133-1147.	1.6	73
17	Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. Sylvestris stands in southern Spain. Forest Ecology and Management, 2019, 433, 313-324.	1.4	63
18	Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain Forest Systems, 2010, 19, 458.	0.1	58

#	Article	IF	CITATIONS
19	Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species. Frontiers in Plant Science, 2016, 7, 418.	1.7	56
20	Towards a better understanding of long-term wood-chemistry variations in old-growth forests: A case study on ancient Pinus uncinata trees from the Pyrenees. Science of the Total Environment, 2018, 625, 220-232.	3.9	47
21	Global fading of the temperature–growth coupling at alpine and polar treelines. Global Change Biology, 2021, 27, 1879-1889.	4.2	46
22	Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands. Forests, 2018, 9, 524.	0.9	43
23	Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System. Journal of Hydrology, 2015, 529, 468-479.	2.3	42
24	Long-term nutrient imbalances linked to drought-triggered forest dieback. Science of the Total Environment, 2019, 690, 1254-1267.	3.9	42
25	The facultative bimodal growth pattern in Quercus ilex – A simple model to predict sub-seasonal and inter-annual growth. Dendrochronologia, 2018, 49, 77-88.	1.0	40
26	Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forests. Dendrochronologia, 2018, 48, 20-29.	1.0	38
27	Forecasting tree growth in coppiced and high forests in the Czech Republic. The legacy of management drives the coming Quercus petraea climate responses. Forest Ecology and Management, 2017, 405, 56-68.	1.4	34
28	Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale matters. Ecological Indicators, 2020, 108, 105753.	2.6	33
29	Droughts and climate warming desynchronize Black pine growth across the Mediterranean Basin. Science of the Total Environment, 2019, 697, 133989.	3.9	30
30	Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Science of the Total Environment, 2020, 721, 137599.	3.9	30
31	Drought Decreases Growth and Increases Mortality of Coexisting Native and Introduced Tree Species in a Temperate Floodplain Forest. Forests, 2018, 9, 205.	0.9	29
32	Defoliation triggered by climate induced effects in Spanish ICP Forests monitoring plots. Forest Ecology and Management, 2014, 331, 245-255.	1.4	28
33	Geographically Structured Growth decline of Rear-Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems, 2019, 22, 1325-1337.	1.6	28
34	Climate controls on tree growth in the Western Mediterranean. Holocene, 2017, 27, 1429-1442.	0.9	25
35	Contrasting growth and water use efficiency after thinning in mixed Abies pinsapo-Pinus pinaster-Pinus sylvestris forests. Journal of Forest Science, 2016, 62, 53-64.	0.5	24
36	Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Science of the Total Environment, 2018, 642, 619-628.	3.9	23

#	Article	IF	CITATIONS
37	Impacts of recurrent dry and wet years alter longâ€ŧerm tree growth trajectories. Journal of Ecology, 2021, 109, 1561-1574.	1.9	22
38	Positive coupling between growth and reproduction in young post-fire Aleppo pines depends on climate and site conditions. International Journal of Wildland Fire, 2015, 24, 507.	1.0	20
39	Post-fire Aleppo pine growth, C and N isotope composition depend on site dryness. Trees - Structure and Function, 2016, 30, 581-595.	0.9	20
40	Analysing Atmospheric Processes and Climatic Drivers of Tree Defoliation to Determine Forest Vulnerability to Climate Warming. Forests, 2017, 8, 13.	0.9	20
41	No systematic effects of sampling direction on climate-growth relationships in a large-scale, multi-species tree-ring data set. Dendrochronologia, 2019, 57, 125624.	1.0	20
42	Mature forests hold maximum live biomass stocks. Forest Ecology and Management, 2021, 480, 118635.	1.4	20
43	Regulation of Water Use in the Southernmost European Fir (Abies pinsapo Boiss.): Drought Avoidance Matters. Forests, 2015, 6, 2241-2260.	0.9	19
44	Which matters more for wood traits in Pinus halepensis Mill., provenance or climate?. Annals of Forest Science, 2020, 77, 1.	0.8	19
45	Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. Science of the Total Environment, 2021, 796, 148930.	3.9	19
46	Testing annual tree-ring chemistry by X-ray fluorescence for dendroclimatic studies in high-elevation forests from the Spanish Pyrenees. Quaternary International, 2019, 514, 130-140.	0.7	18
47	Tree Species Are Differently Impacted by Cumulative Drought Stress and Present Higher Growth Synchrony in Dry Places. Frontiers in Forests and Global Change, 2020, 3, .	1.0	18
48	Climate warming predispose sessile oak forests to drought-induced tree mortality regardless of management legacies. Forest Ecology and Management, 2021, 491, 119097.	1.4	18
49	Growth Rate and Climatic Response of <i>Machaerium scleroxylon</i> In a Dry Tropical Forest In Southeastern Santa Cruz, Bolivia. Tree-Ring Research, 2013, 69, 63-79.	0.4	17
50	Observed and projected impacts of climate on radial growth of three endangered conifers in northern Mexico indicate high vulnerability of drought-sensitive species from mesic habitats. Dendrochronologia, 2017, 45, 145-155.	1.0	16
51	Climate, drought and hydrology drive narrow-leaved ash growth dynamics in southern European riparian forests. Forest Ecology and Management, 2021, 490, 119128.	1.4	16
52	Site and Age Condition the Growth Responses to Climate and Drought of RelictPinus nigraSubsp.salzmanniiPopulations in Southern Spain. Tree-Ring Research, 2014, 70, 145-155.	0.4	15
53	Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests. Tree Physiology, 2016, 36, 1536-1549.	1.4	15
54	Drought, axe and goats. More variable and synchronized growth forecasts worsening dieback in Moroccan Atlas cedar forests. Science of the Total Environment, 2021, 765, 142752.	3.9	15

RAúL SÃINCHEZ-SALGUERO

#	Article	IF	CITATIONS
55	The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Science of the Total Environment, 2021, 769, 144702.	3.9	15
56	How do Droughts and Wildfires Alter Seasonal Radial Growth in Mediterranean Aleppo Pine Forests?. Tree-Ring Research, 2018, 74, 1-14.	0.4	14
57	Climate Warming Alters Age-Dependent Growth Sensitivity to Temperature in Eurasian Alpine Treelines. Forests, 2018, 9, 688.	0.9	14
58	Tree species from contrasting hydrological niches show divergent growth and water-use efficiency. Dendrochronologia, 2018, 52, 87-95.	1.0	14
59	Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agricultural and Forest Meteorology, 2020, 291, 108078.	1.9	14
60	Climate Differently Impacts the Growth of Coexisting Trees and Shrubs under Semi-Arid Mediterranean Conditions. Forests, 2021, 12, 381.	0.9	14
61	Towards a new approach for dendroprovenancing pines in the Mediterranean Iberian Peninsula. Dendrochronologia, 2020, 60, 125688.	1.0	13
62	The role of nutritional impairment in carbonâ€water balance of silver fir droughtâ€induced dieback. Global Change Biology, 2022, 28, 4439-4458.	4.2	13
63	Tree growth response to drought partially explains regionalâ€scale growth and mortality patterns in Iberian forests. Ecological Applications, 2022, 32, e2589.	1.8	13
64	Response of biomass allocation patterns to thinning in Pinus halepensis differs under dry and semiarid Mediterranean climates. Annals of Forest Science, 2015, 72, 595-607.	0.8	12
65	Biogeographic, Atmospheric, and Climatic Factors Influencing Tree Growth in Mediterranean Aleppo Pine Forests. Forests, 2020, 11, 736.	0.9	12
66	Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: an ensemble niche-based approach. IForest, 2018, 11, 396-405.	0.5	12
67	Exploring wood anatomy, density and chemistry profiles to understand the tree-ring formation in Amazonian tree species. Dendrochronologia, 2022, 71, 125915.	1.0	11
68	Wood anatomy and tree growth covary in riparian ash forests along climatic and ecological gradients. Dendrochronologia, 2021, 70, 125891.	1.0	10
69	Dendrochronology Course In ValsaÃn Forest, Segovia, Spain. Tree-Ring Research, 2013, 69, 93-100.	0.4	9
70	Shifts in Growth Responses to Climate and Exceeded Drought-Vulnerability Thresholds Characterize Dieback in Two Mediterranean Deciduous Oaks. Forests, 2020, 11, 714.	0.9	9
71	Contrasting Signals of the Westerly Index and North Atlantic Oscillation over the Drought Sensitivity of Tree-Ring Chronologies from the Mediterranean Basin. Atmosphere, 2020, 11, 644.	1.0	9
72	Vulnerabilidad frente a la sequÃa de repoblaciones de dos especies de pinos en su lÃmite meridional en Europa. Ecosistemas, 2012, 21, 31-40.	0.2	9

#	Article	IF	CITATIONS
73	The Multiple Causes of Forest Decline in Spain: Drought, Historical Logging, Competition and Biotic Stressors. Ecological Studies, 2017, , 307-323.	0.4	8
74	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	5.8	8
75	Vegetation dynamics of managed <scp>M</scp> editerranean forests 16Âyr after large fires in southeastern <scp>S</scp> pain. Applied Vegetation Science, 2015, 18, 272-282.	0.9	6
76	An intensive tree-ring experience: Connecting education and research during the 25th European Dendroecological Fieldweek (Asturias, Spain). Dendrochronologia, 2017, 42, 80-93.	1.0	5
77	Growth decline assessment in Pinus sylvestris L. and Pinus nigra Arnold. forest by using 3-PG model Forest Systems, 2016, 25, e068.	0.1	5
78	Forest structure drives the expected growth of Pinus nigra along its latitudinal gradient under warming climate. Forest Ecology and Management, 2021, 505, 119818.	1.4	5
79	Effects of Global Change on Tree Growth and Vigor of Mediterranean Pines. Managing Forest Ecosystems, 2021, , 237-249.	0.4	3
80	Biomass storage in low timber productivity Mediterranean forests managed after natural post-fire regeneration in south-eastern Spain. European Journal of Forest Research, 2014, 133, 793.	1.1	2
81	Tree growth and treeline responses to temperature: Different questions and concepts. Global Change Biology, 2021, 27, e13-e14.	4.2	2
82	How Past and Future Climate and Drought Drive Radial-Growth Variability of Three Tree Species in a Bolivian Tropical Dry Forest. , 2020, , 141-167.		1
83	Influence of site conditions and land management on Quercus suber L. population dynamics in the southern Iberian Peninsula. IForest, 2022, 15, 77-84.	0.5	1
84	Reply to the letter to editor regarding Camarero et al. (2021): Overgrazing and pollarding threaten Atlas cedar conservation under forecasted aridification regardless stakeholders' nature. Forest Ecology and Management, 2022, 503, 119779.	1.4	0
85	Adaptive Management in Relict Mediterranean Forests. Thinning Enhances Long-Term Growth but Short-Term Resilience to Drought in Abies pinsapo. , 2020, 3, .		0