
Jean-François Trempe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5527007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rare PSAP Variants and Possible Interaction with GBA in REM Sleep Behavior Disorder. Journal of Parkinson's Disease, 2022, 12, 333-340.	2.8	3
2	Selective localization of Mfn2 near PINK1 enables its preferential ubiquitination by Parkin on mitochondria. Open Biology, 2022, 12, 210255.	3.6	10
3	Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Molecular Cell, 2022, 82, 44-59.e6.	9.7	42
4	An approach to measuring protein turnover in human induced pluripotent stem cell organoids by mass spectrometry. Methods, 2022, 203, 17-27.	3.8	5
5	The role of the individual TOM subunits in the association of PINK1 with depolarized mitochondria. Journal of Molecular Medicine, 2022, 100, 747-762.	3.9	10
6	Genetic, structural and clinical analysis of spastic paraplegia 4. Parkinsonism and Related Disorders, 2022, 98, 62-69.	2.2	7
7	Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. Journal of Proteome Research, 2021, 20, 506-517.	3.7	14
8	Evidence for Nonâ€Mendelian Inheritance in Spastic Paraplegia 7. Movement Disorders, 2021, 36, 1664-1675.	3.9	11
9	<scp><i>GCH1</i></scp> mutations in hereditary spastic paraplegia. Clinical Genetics, 2021, 100, 51-58.	2.0	5
10	Crystal structure of human PACRG in complex with MEIG1 reveals roles in axoneme formation and tubulin binding. Structure, 2021, 29, 572-586.e6.	3.3	19
11	Clinical and Genetic Analysis of Costa Rican Patients With Parkinson's Disease. Frontiers in Neurology, 2021, 12, 656342.	2.4	4
12	Novel Associations of <i>BST1</i> and <i>LAMP3</i> With REM Sleep Behavior Disorder. Neurology, 2021, 96, e1402-e1412.	1.1	12
13	Genetic, Structural, and Functional Evidence Link <i>TMEM175</i> to Synucleinopathies. Annals of Neurology, 2020, 87, 139-153.	5.3	65
14	TNF receptor–associated factor 6 interacts with ALS-linked misfolded superoxide dismutase 1 and promotes aggregation. Journal of Biological Chemistry, 2020, 295, 3808-3825.	3.4	16
15	Clinical and genetic analysis of <i>ATP13A2</i> in hereditary spastic paraplegia expands the phenotype. Molecular Genetics & Genomic Medicine, 2020, 8, e1052.	1.2	20
16	Fine-Tuning TOM-Mitochondrial Import via Ubiquitin. Trends in Cell Biology, 2020, 30, 425-427.	7.9	6
17	The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. ELife, 2020, 9, .	6.0	1,191
18	Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cellular and Molecular Life Sciences, 2019, 76, 4589-4611.	5.4	73

#	Article	IF	CITATIONS
19	The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair, 2019, 80, 45-51.	2.8	31
20	Structure of the Cyanobacterial NAD(P)H Dehydrogenase-Like Complex of Oxygenic Photosynthesis. Microscopy and Microanalysis, 2019, 25, 1326-1327.	0.4	0
21	Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15616-15624.	7.1	50
22	The landscape of Parkin variants reveals pathogenic mechanisms and therapeutic targets in Parkinson's disease. Human Molecular Genetics, 2019, 28, 2811-2825.	2.9	61
23	<i>SMPD1</i> mutations, activity, and αâ€synuclein accumulation in Parkinson's disease. Movement Disorders, 2019, 34, 526-535.	3.9	81
24	<scp>PINK</scp> 1 autophosphorylation is required for ubiquitin recognition. EMBO Reports, 2018, 19, .	4.5	88
25	New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 515-534.	5.2	19
26	Small-Angle X-Ray Scattering for the Study of Proteins in the Ubiquitin Pathway. Methods in Molecular Biology, 2018, 1844, 197-208.	0.9	0
27	Mechanism of parkin activation by phosphorylation. Nature Structural and Molecular Biology, 2018, 25, 623-630.	8.2	128
28	Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. ELife, 2018, 7, .	6.0	261
29	Structures of ubiquitin-like (Ubl) and Hsp90-like domains of sacsin provide insight into pathological mutations. Journal of Biological Chemistry, 2018, 293, 12832-12842.	3.4	13
30	Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nature Communications, 2017, 8, 14697.	12.8	74
31	Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Scientific Reports, 2016, 6, 30443.	3.3	46
32	Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Scientific Reports, 2016, 6, 33671.	3.3	44
33	A Ubl/ubiquitin switch in the activation of Parkin. EMBO Journal, 2015, 34, 2492-2505.	7.8	164
34	The E3 Ubiquitin Ligase Parkin Is Recruited to the 26 S Proteasome via the Proteasomal Ubiquitin Receptor Rpn13. Journal of Biological Chemistry, 2015, 290, 7492-7505.	3.4	32
35	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	27.8	1,185
36	Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation. Science, 2013, 340, 1451-1455.	12.6	440

3

#	Article	IF	CITATIONS
37	Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Frontiers in Neurology, 2013, 4, 38.	2.4	110
38	Reading the ubiquitin postal code. Current Opinion in Structural Biology, 2011, 21, 792-801.	5.7	79
39	Selfâ€association studies of the bifunctional <i>N</i> â€acetylglucosamineâ€1â€phosphate uridyltransferase from <i>Escherichia coli</i> . Protein Science, 2011, 20, 745-752.	7.6	3
40	SH3 Domains from a Subset of BAR Proteins Define a Ubl-Binding Domain and Implicate Parkin in Synaptic Ubiquitination. Molecular Cell, 2009, 36, 1034-1047.	9.7	121
41	Recoupling of residual dipolar couplings in single-domain polymer-stabilized liquid crystals undergoing magic-angle spinning. Journal of Magnetic Resonance, 2003, 164, 329-337.	2.1	5
42	Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy. Journal of Biomolecular NMR, 2002, 22, 83-87.	2.8	21