Zai-Xing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526515/publications.pdf Version: 2024-02-01

ZAL-XING LIANG

#	Article	IF	CITATIONS
1	Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Composites Science and Technology, 2015, 121, 56-72.	3.8	209
2	Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceramics International, 2017, 43, 10757-10762.	2.3	173
3	Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy, 2022, 91, 106633.	8.2	127
4	Recent Advances in Magnetic Field-Enhanced Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 10303-10316.	2.5	124
5	Microorganism Assisted Synthesized Nanoparticles for Catalytic Applications. Energies, 2019, 12, 190.	1.6	107
6	Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Composites Science and Technology, 2017, 149, 75-80.	3.8	98
7	A high efficiency H ₂ S gas sensor material: paper like Fe ₂ O ₃ /graphene nanosheets and structural alignment dependency of device efficiency. Journal of Materials Chemistry A, 2014, 2, 6714-6717.	5.2	87
8	A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chemical Communications, 2011, 47, 6350.	2.2	86
9	Biomorphic structural batteries for robotics. Science Robotics, 2020, 5, .	9.9	67
10	Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. Journal of Materials Chemistry A, 2022, 10, 1760-1767.	5.2	57
11	Rational design of MXene@TiO ₂ nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 16678-16684.	2.8	55
12	Anti-freezing, moisturizing, resilient and conductive organohydrogel for sensitive pressure sensors. Journal of Colloid and Interface Science, 2021, 594, 584-592.	5.0	54
13	Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites. Nanoscale, 2013, 5, 6265.	2.8	39
14	Magnetic Field Enhanced Electrocatalytic Oxygen Evolution of NiFe‣DH/Co ₃ O ₄ pâ€n Heterojunction Supported on Nickel Foam. Small Methods, 2022, 6, e2200084.	4.6	39
15	The modification of Kevlar fibers in coupling agents by γ-ray co-irradiation. Fibers and Polymers, 2011, 12, 1014-1020.	1.1	38
16	Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. Polymer, 2020, 211, 123095.	1.8	38
17	Unraveling the Origins of the "Unreactive Core―in Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. ACS Energy Letters, 2019, 4, 2007-2012.	8.8	33
18	Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Materials, 2020, 25, 416-425.	9.5	30

ZAI-XING JIANG

#	Article	IF	CITATIONS
19	Visible-Light-Promoted C2 Selective Arylation of Quinoline and Pyridine <i>N</i> -Oxides with Diaryliodonium Tetrafluoroborate. Journal of Organic Chemistry, 2020, 85, 2733-2742.	1.7	29
20	Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Metals, 2022, 41, 901-910.	3.6	29
21	Thermal and mechanical performance of electrospun chitosan/poly(vinyl alcohol) nanofibers with graphene oxide. Advanced Composites and Hybrid Materials, 2018, 1, 722-730.	9.9	26
22	Coral-like S-doped CoSe2 with enriched 1T-phase as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 322, 134739.	2.6	25
23	Growth of carbon black onto continuous carbon fiber to produce composites with improved mechanical and interfacial properties: A step closer to industrial production. Composites Science and Technology, 2019, 173, 83-89.	3.8	25
24	Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy. Nano Research, 2015, 8, 2170-2178.	5.8	24
25	Insights into enhanced sodium ion storage mechanism in Fe3S4: The coupling of surface chemistry, microstructural regulation and 3D electronic transport. Nano Energy, 2019, 62, 384-392.	8.2	24
26	Engineering hierarchical porous S-doped Defective nickel Cobaltite/carbon hybrids to boost efficient asymmetric electrochemical capacitor. Composites Science and Technology, 2022, 226, 109559.	3.8	24
27	Interfacial microstructure and properties of carbon fiber-reinforced unsaturated polyester composites modified with carbon nanotubes. Journal of Adhesion Science and Technology, 2014, 28, 444-453.	1.4	23
28	Constructing Interfacial Nanolayer Stabilizes 4.3 V Highâ€Voltage Allâ€Solidâ€State Lithium Batteries with PEOâ€Based Solidâ€State Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	23
29	Chemically grafting carbon nanotubes onto carbon fibers by poly(acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites. Fibers and Polymers, 2014, 15, 659-663.	1.1	21
30	CNT coatings grown on the outer and inner surfaces of magnetic hollow carbon fibers with enhanced electromagnetic interference shielding performance. Journal of Materials Chemistry C, 2019, 7, 14375-14383.	2.7	21
31	Facile method to functionalize graphene oxide nanoribbons and its application to Poly(p-phenylene) Tj ETQq1 1	0.784314 3.8	rg₿Ţ /Overl⊂
32	Acetylated SEBS Enhanced DC Insulation Performances of Polyethylene. Polymers, 2019, 11, 1033.	2.0	19
33	Use of Grafted Voltage Stabilizer to Enhance Dielectric Strength of Cross-Linked Polyethylene. Polymers, 2019, 11, 176.	2.0	19
34	Carbon nanotubes grafting PBO fiber: A study on the interfacial properties of epoxy composites. Polymer Composites, 2012, 33, 927-932.	2.3	16
35	Facilitating the mechanical properties of a high-performance pH-sensitive membrane by cross-linking graphene oxide and polyacrylic acid. Nanotechnology, 2013, 24, 335704.	1.3	14
36	Flyash/polymer composite electrolyte with internal binding interaction enables highly-stable extrinsic-interfaces of all-solid-state lithium batteries. Chemical Engineering Journal, 2022, 428, 131041.	6.6	13

ZAI-XING JIANG

#	Article	IF	CITATIONS
37	Unraveling the advances of trace doping engineering for potassium ion battery anodes via tomography. Journal of Energy Chemistry, 2021, 58, 355-363.	7.1	12
38	A Facile Route to Synthesize Nanographene Reinforced PBO Composites Fiber via in Situ Polymerization. Polymers, 2016, 8, 251.	2.0	11
39	Fabrication of light, flexible and multifunctional graphene nanoribbon fibers via a 3D solution printing method. Nanotechnology, 2016, 27, 465702.	1.3	11
40	Shape memory effect of chitosan/glycerol composite film in mixed water/ethanol solution. Journal of Applied Polymer Science, 2019, 136, 47037.	1.3	10
41	Rapidly self-healing, magnetically controllable, stretchable, smart, moldable nanoparticle composite gel. New Journal of Chemistry, 2020, 44, 10586-10591.	1.4	9
42	Synthesis of novel single-walled carbon nanotubes/poly (p-phenylene benzobisoxazole) nanocomposite. Polymer Bulletin, 2011, 67, 1731-1739.	1.7	8
43	Preparation and properties of PIPD nanofibers made by a swelling and ultrasonic stripping process. RSC Advances, 2016, 6, 78073-78079.	1.7	6
44	Hollow C@TiO ₂ array nanospheres as efficient sulfur hosts for lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 5493-5497.	2.5	5
45	Effect of a new drug releasing system on microencapsulated islet transplantation. International Journal of Clinical and Experimental Pathology, 2015, 8, 12390-9.	0.5	5
46	A metallosupramolecular polymer deposited <i>via</i> inkjet printing for fast-switching pixelated electrochromic devices. Journal of Materials Chemistry C, 2022, 10, 3353-3359.	2.7	3
47	A hierarchically porous TiO ₂ @C membrane with oxygen vacancies: a novel platform for enhancing the catalytic conversion of polysulfides. Dalton Transactions, 2022, 51, 2855-2862.	1.6	3
48	Miniature Boat Fabrication with Striking Loading Capacity in Seawater from Hydrophobic Steel Mesh. Chinese Journal of Chemical Physics, 2015, 28, 762-766.	0.6	1