Zhong Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526493/publications.pdf Version: 2024-02-01

		126907	149698
170	4,311	33	56
papers	citations	h-index	g-index
171	171	171	3864
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A highly active novel \hat{I}^2 -nucleating agent for isotactic polypropylene. Polymer, 2008, 49, 2745-2754.	3.8	183
2	Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 2010, 101, 8144-8150.	9.6	168
3	An overview on performance characteristics of bio-jet fuels. Fuel, 2019, 237, 916-936.	6.4	166
4	A self-cleaning polybenzoxazine/TiO ₂ surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale, 2015, 7, 19476-19483.	5.6	150
5	Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corrosion Science, 2014, 80, 269-275.	6.6	138
6	Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction. Fuel, 2016, 165, 289-297.	6.4	125
7	Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts. Fuel, 2013, 109, 693-701.	6.4	106
8	Corrosion resistance of novel silane-functional polybenzoxazine coating on steel. Corrosion Science, 2013, 70, 145-151.	6.6	101
9	Hydrophobic benzoxazine-cured epoxy coatings for corrosion protection. Progress in Organic Coatings, 2013, 76, 1178-1183.	3.9	93
10	Preparation and Surface Properties of Novel Low Surface Free Energy Fluorinated Silane-Functional Polybenzoxazine Films. Langmuir, 2011, 27, 8365-8370.	3.5	83
11	Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 392, 123694.	12.7	78
12	Synthesis and Surface Properties of Low Surface Free Energy Silane-Functional Polybenzoxazine Films. Langmuir, 2013, 29, 411-416.	3.5	72
13	Effect of MoO ₃ on Structures and Properties of Ni-SiO ₂ Methanation Catalysts Prepared by the Hydrothermal Synthesis Method. Industrial & Engineering Chemistry Research, 2013, 52, 14533-14544.	3.7	60
14	Effect of MoO3 on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel, 2014, 116, 25-33.	6.4	60
15	Thermal properties of heat storage composites containing multiwalled carbon nanotubes. Journal of Applied Physics, 2008, 104, .	2.5	59
16	Synthesis and component confirmation of biodiesel from palm oil and dimethyl carbonate catalyzed by immobilized-lipase in solvent-free system. Fuel, 2010, 89, 3960-3965.	6.4	59
17	Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 590-596.	2.1	57
18	Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 18100-18108.	10.3	57

#	Article	lF	CITATIONS
19	Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 653-665.	2.1	56
20	Latent Catalyst-Containing Naphthoxazine: Synthesis and Effects on Ring-Opening Polymerization. Macromolecules, 2016, 49, 7129-7140.	4.8	56
21	Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization, and melting behaviors of isotactic polypropylene. Journal of Applied Polymer Science, 2006, 100, 4868-4874.	2.6	52
22	Effect of inhibitor-loaded halloysite nanotubes on active corrosion protection of polybenzoxazine coatings on mild steel. Progress in Organic Coatings, 2019, 134, 126-133.	3.9	52
23	Effect of N-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer, 2011, 52, 1092-1101.	3.8	50
24	Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability. Fuel, 2017, 188, 267-276.	6.4	48
25	Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. Journal of Applied Polymer Science, 2006, 101, 3307-3316.	2.6	45
26	A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation. Separation and Purification Technology, 2019, 229, 115792.	7.9	44
27	PW based phase change nanocomposites containing \hat{I}^3 -Al2O3. Journal of Thermal Analysis and Calorimetry, 2010, 102, 709-713.	3.6	41
28	Supramolecular Assembly Mediates the Formation of Single-Chain Polymeric Nanoparticles. ACS Macro Letters, 2015, 4, 1184-1188.	4.8	41
29	Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). Journal of Materials Science, 2020, 55, 14642-14655.	3.7	39
30	Trimming the π bridge of microporous frameworks for bidentate anchoring of polysulfides to stabilize lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 19001-19010.	10.3	38
31	Bio-based polybenzoxazine superhydrophobic coating with active corrosion resistance for carbon steel protection. Surface and Coatings Technology, 2021, 405, 126569.	4.8	37
32	Effect of Citric Acid on the Synthesis of CO Methanation Catalysts with High Activity and Excellent Stability. Industrial & Engineering Chemistry Research, 2017, 56, 2383-2392.	3.7	36
33	Enhanced corrosion resistance of polybenzoxazine coatings by epoxy incorporation. RSC Advances, 2016, 6, 28428-28434.	3.6	35
34	Ni based catalyst supported on KIT-6 silica for CO methanation: Confinement effect of three dimensional channel on NiO and Ni particles. Microporous and Mesoporous Materials, 2018, 262, 89-97.	4.4	35
35	In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chemical Engineering Journal, 2019, 358, 1243-1252.	12.7	35
36	Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system. Journal of Applied Polymer Science, 2010, 115, 330-337.	2.6	34

#	Article	IF	CITATIONS
37	Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction. RSC Advances, 2016, 6, 35875-35883.	3.6	34
38	The influence of crystal structures of nucleating agents on the crystallization behaviors of isotactic polypropylene. Colloid and Polymer Science, 2006, 285, 11-17.	2.1	33
39	Butyl-biodiesel production from waste cooking oil: Kinetics, fuel properties and emission performance. Fuel, 2019, 236, 1489-1495.	6.4	32
40	Ultrathin 2D metal–organic framework nanosheets prepared <i>via</i> sonication exfoliation of membranes from interfacial growth and exhibition of enhanced catalytic activity by their gold nanocomposites. RSC Advances, 2019, 9, 9386-9391.	3.6	31
41	Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polymer Engineering and Science, 2015, 55, 251-259.	3.1	30
42	Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation. Fuel, 2016, 179, 193-201.	6.4	30
43	Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 8-15.	4.7	30
44	Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene. Journal of Materials Science, 2016, 51, 5598-5608.	3.7	29
45	Synthesis and characterization of well dispersed nickel-incorporated SBA-15 and its high activity in syngas methanation reaction. Applied Catalysis A: General, 2016, 516, 127-134.	4.3	29
46	Fluorine-free superhydrophobic/hydrophobic polybenzoxazine/TiO ₂ films with excellent thermal stability and reversible wettability. RSC Advances, 2015, 5, 55513-55519.	3.6	28
47	Corrosion protection of hydrophobic bisphenol A-based polybenzoxazine coatings on mild steel. RSC Advances, 2016, 6, 5805-5811.	3.6	28
48	Chain extension and oxidation stabilization of Triphenyl Phosphite (TPP) in PLA. Polymer Degradation and Stability, 2016, 124, 112-118.	5.8	28
49	Biodiesel production from palm oil and mixed dimethyl/diethyl carbonate with controllable cold flow properties. Fuel, 2018, 216, 781-786.	6.4	28
50	Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. RSC Advances, 2015, 5, 76451-76457.	3.6	27
51	The chain dis-entanglement effect of polyhedral oligomeric silsesquioxanes (POSS) on ultra-high molecular weight polyethylene (UHMWPE). Polymer, 2020, 202, 122631.	3.8	27
52	Structure effect of phosphite on the chain extension in PLA. Polymer Degradation and Stability, 2015, 120, 283-289.	5.8	26
53	One-Step Synthesis of Nonspherical Organosilica Particles with Tunable Morphology. Langmuir, 2018, 34, 11723-11728.	3.5	26
54	Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 632-641.	2.1	26

#	Article	IF	CITATIONS
55	Preparation and characterization of micron-sized polystyrene/polysiloxane core/shell particles. Colloid and Polymer Science, 2006, 284, 1062-1066.	2.1	25
56	Investigation on thermal properties of heat storage composites containing carbon fibers. Journal of Applied Physics, 2011, 110, .	2.5	25
57	In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer, 2018, 151, 84-91.	3.8	24
58	Nucleobaseâ€Functionalized Supramolecular Micelles with Tunable Physical Properties for Efficient Controlled Drug Release. Macromolecular Bioscience, 2016, 16, 1415-1421.	4.1	23
59	Dimensional Stability of LDPE Foams with CO ₂ + <i>i</i> -C ₄ H ₁₀ Mixtures as Blowing Agent: Experimental and Numerical Simulation. Industrial & Engineering Chemistry Research, 2019, 58, 13154-13162.	3.7	23
60	High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Research, 2019, 12, 2736-2742.	10.4	23
61	A Robust Polybenzoxazine/SiO ₂ Fabric with Superhydrophobicity for High-Flux Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7787-7796.	3.7	23
62	Development of a superhydrophobic polybenzoxazine surface with self-cleaning and reversible water adhesion properties. RSC Advances, 2016, 6, 106054-106063.	3.6	21
63	Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers, 2019, 11, 1304.	4.5	21
64	Wear Resistance Mechanism of Ultrahigh-Molecular-Weight Polyethylene Determined from Its Structure–Property Relationships. Industrial & Engineering Chemistry Research, 2019, 58, 19519-19530.	3.7	21
65	A highly active and selective βâ€nucleating agent for isotactic polypropylene and crystallization behavior of βâ€nucleated isotactic polypropylene under rapid cooling. Journal of Applied Polymer Science, 2016, 133, .	2.6	20
66	A novel self-dispersed β nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer, 2017, 132, 69-78.	3.8	20
67	Essential role of organic additives in preparation of efficient Ni/KIT-6 catalysts for CO methanation. Applied Catalysis A: General, 2018, 558, 99-108.	4.3	20
68	Vinyl polysiloxane microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene. Journal of Polymer Research, 2018, 25, 1.	2.4	20
69	Preparation of superhydrophobic polybenzoxazine/SiO2 films with self-cleaning and ice delay properties. Progress in Organic Coatings, 2018, 123, 254-260.	3.9	20
70	A novel highly efficient βâ€nucleating agent for isotactic polypropylene. Journal of Applied Polymer Science, 2012, 123, 108-117.	2.6	19
71	A "reduced-pressure distillation―method to prepare zein-based fat analogue for application in mayonnaise formulation. Journal of Food Engineering, 2016, 182, 1-8.	5.2	18
72	Effect of La, Mg and Mo additives on dispersion and thermostability of Ni species on KIT-6 for CO methanation. Applied Catalysis A: General, 2017, 543, 125-132.	4.3	18

#	Article	IF	CITATIONS
73	Polybenzoxazine/organoclay composite coatings with intercalated structure: Relationship between solubility parameters and corrosion protection performance. Progress in Organic Coatings, 2018, 115, 188-194.	3.9	18
74	Electrospun bead-in-string fibrous membrane prepared from polysilsesquioxane-immobilising poly(lactic acid) with low filtration resistance for air filtration. Journal of Polymer Research, 2020, 27, 1.	2.4	18
75	A rational design of double layer mesoporous polysiloxane coatings for broadband antireflection. Journal of Sol-Gel Science and Technology, 2015, 74, 677-684.	2.4	17
76	Effects of Interfacial Interaction on Corrosion Resistance of Polybenzoxazine/SiO ₂ Nanocomposite Coatings. ACS Applied Polymer Materials, 2019, 1, 381-391.	4.4	17
77	Two novel eugenol-based difunctional benzoxazines: Synthesis and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126209.	4.7	17
78	Preparation of Bioâ€Based Polybenzoxazine/Pyrogallol/Polyhedral Oligomeric Silsesquioxane Nanocomposites: Low Dielectric Constant and Low Curing Temperature. Macromolecular Materials and Engineering, 2022, 307, 2100747.	3.6	17
79	Three-solvent spherical crystallization method with a model drug: Clopidogrel hydrogen sulfate. Chemical Engineering Science, 2020, 212, 115001.	3.8	16
80	Study of two novel siloxane-containing polybenzoxazines with intrinsic low dielectric constant. Polymer, 2022, 245, 124572.	3.8	16
81	Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. Journal of Applied Polymer Science, 2009, 112, 1471-1480.	2.6	15
82	A new route of manipulation of poly(<scp>L</scp> â€lactic acid) crystallization by selfâ€assembly of <i>p</i> â€ <i>tert</i> â€butylcalix[8]arene and toluene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1235-1243.	2.1	15
83	Preparation and surface properties of transparent UV-resistant "petal effect―superhydrophobic surface based on polybenzoxazine. Applied Surface Science, 2015, 353, 1137-1142.	6.1	15
84	The Crystallization Behavior of Isotactic Polypropylene Induced by a Novel Antinucleating Agent and Its Inhibition Mechanism of Nucleation. Industrial & Engineering Chemistry Research, 2015, 54, 7650-7657.	3.7	15
85	Surface properties and hydrogen bonds of mono-functional polybenzoxazines with different N-substituents. Chinese Journal of Polymer Science (English Edition), 2016, 34, 919-932.	3.8	15
86	Shear-induced β -form polypropylene in long chain branching isotactic polypropylene. Polymer Engineering and Science, 2016, 56, 240-247.	3.1	15
87	Crosslinked main-chain-type polybenzoxazine coatings for corrosion protection of mild steel. Journal of Coatings Technology Research, 2017, 14, 937-944.	2.5	15
88	An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer, 2021, 220, 123574.	3.8	15
89	Synthesis of poly(styrene-co-3-trimethoxysilyl propyl methacrylate) microspheres coated with polysiloxane layer. Colloid and Polymer Science, 2007, 285, 599-604.	2.1	14
90	Intercalated polybenzoxazine/organoclay composites with enhanced performance in corrosion resistance. Journal of Coatings Technology Research, 2016, 13, 63-72.	2.5	14

#	Article	IF	CITATIONS
91	Improving the stability and ductility of polylactic acid <i>via</i> phosphite functional polysilsesquioxane. RSC Advances, 2019, 9, 25151-25157.	3.6	14
92	Effect of Si-modified zirconia on the properties of MoO3/Si-ZrO2 catalysts for sulfur-resistant CO methanation. Applied Catalysis A: General, 2019, 575, 230-237.	4.3	14
93	Effect of reflux digestion time on MoO3/ZrO2 catalyst for sulfur-resistant CO methanation. Fuel, 2019, 241, 129-137.	6.4	14
94	Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents. Journal of Materials Science, 2016, 51, 788-796.	3.7	13
95	Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate. Journal of Polymer Research, 2018, 25, 1.	2.4	13
96	Polybenzoxazine/Epoxy Composite Coatings: Effect of Crosslinking on Corrosion Resistance. Industrial & Engineering Chemistry Research, 2021, 60, 1675-1683.	3.7	13
97	Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene. Frontiers of Chemical Science and Engineering, 2016, 10, 396-404.	4.4	12
98	Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Advances, 2018, 8, 20790-20800.	3.6	12
99	The correlation between crystal structure and nucleation efficiency of a lithium (I) complex on isotactic polypropylene. Journal of Applied Polymer Science, 2012, 125, 2963-2969.	2.6	11
100	Combined effect of organic phosphate sodium and nanoclay on the mechanical properties and crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2012, 123, 617-626.	2.6	11
101	Nucleobase-functionalized supramolecular polymer films with tailorable properties and tunable biodegradation rates. Polymer Chemistry, 2017, 8, 1454-1459.	3.9	11
102	Nucleation effects of zinc adipate as Î ² -Nucleating agent in ethylene-propylene block copolymerized polypropylene. Journal of Polymer Research, 2017, 24, 1.	2.4	11
103	The effects of octadecylamine functionalized multi-wall carbon nanotubes on the conductive and mechanical properties of ultra-high molecular weight polyethylene. Journal of Polymer Research, 2018, 25, 1.	2.4	11
104	Preparation of diamine-based polybenzoxazine coating for corrosion protection on mild steel. Journal of Polymer Research, 2019, 26, 1.	2.4	11
105	Toward Understanding the Effect of Solvent Evaporation on the Morphology of PLGA Microspheres by Double Emulsion Method. Industrial & Engineering Chemistry Research, 2021, 60, 9196-9205.	3.7	11
106	Effect of Precursors of Fe-Based Fischer–Tropsch Catalysts Supported on Expanded Graphite for CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15545-15556.	6.7	11
107	Non-isothermal degradation kinetics for polycarbonate/ polymethylphenylsilsesquioxane composites. E-Polymers, 2010, 10, .	3.0	10
108	Control of thermal degradation of poly(lactic acid) using functional polysilsesquioxane microspheres as chain extenders. Journal of Applied Polymer Science, 2015, 132, .	2.6	10

#	Article	IF	CITATIONS
109	Study on variable nucleation efficiency of N,N ′-Dicyclohexyl-2,6-naphthalenedicarboxamide on isotactic polypropylene. Journal of Thermoplastic Composite Materials, 2016, 29, 1667-1679.	4.2	10
110	Effect of nucleating agent supported on zeolite via the impregnation on the crystallization ability of isotactic polypropylene and its mechanism. Polymers for Advanced Technologies, 2019, 30, 2674-2685.	3.2	10
111	Superhydrophobic Polybenzoxazine/TiO ₂ Coatings with Reversible Wettability for High-Flux Oil/Water Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8516-8526.	3.7	10
112	A Novel Strategy for Achieving High Melt Strength Polypropylene and an Investigation of Its Foamability. Journal of Macromolecular Science - Physics, 2014, 53, 1695-1714.	1.0	9
113	A novel Î ² -nucleating agent for isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2029-2040.	3.6	9
114	Structural Relationships between Zinc Hexahydrophthalate and the β Phase of Isotactic Polypropylene. Industrial & Engineering Chemistry Research, 2020, 59, 18529-18538.	3.7	9
115	Failure mechanism of zinc adipate as a Î ² -nucleating agent for polypropylene in the presence of calcium stearate. Polymer, 2021, 215, 123374.	3.8	9
116	New transparent poly(<scp>l</scp> -lactide acid) films as high-performance bio-based nanocomposites. RSC Advances, 2016, 6, 23949-23955.	3.6	8
117	Conformation order of poly(l-lactic acid) chains during the melt crystallization process: infrared and two-dimensional infrared correlation spectroscopy study. Journal of Materials Science, 2016, 51, 4880-4887.	3.7	8
118	Antioxidation and mechanism of phosphites including the free phenolic hydroxyl group in polypropylene. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
119	Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 161-173.	2.1	8
120	Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer. Journal of Polymer Research, 2019, 26, 1.	2.4	8
121	Thermal curing behavior of benzoxazine functional polysilsesquioxane nanospheres. Thermochimica Acta, 2019, 678, 178295.	2.7	8
122	Facile Fabrication of Lilium Pollen-like Organosilica Particles. Langmuir, 2020, 36, 571-575.	3.5	8
123	Enhanced sintering resistance of bimetal/SBA-15 catalysts with promising activity under a low temperature for CO methanation. RSC Advances, 2020, 10, 20852-20861.	3.6	8
124	Influence of lanthanum stearate on the crystallization behavior of isotactic polypropylene. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 628-634.	1.5	7
125	Relationship between molecular structure and nucleation of benzylidene acetals in isotactic polypropylene. Polymer Composites, 2012, 33, 371-378.	4.6	7
126	Supramolecular Polymer Networkâ€Mediated Selfâ€Assembly of Semicrystalline Polymers with Excellent Crystalline Performance. Macromolecular Rapid Communications, 2017, 38, 1600702.	3.9	7

#	Article	IF	CITATIONS
127	Isothermal and non-isothermal crystallization of isotactic polypropylene in the presence of an $\hat{l}\pm$ nucleating agent and zeolite 13X. Thermochimica Acta, 2018, 667, 9-18.	2.7	7
128	13X zeolite as Difunctional nucleating agent regulating the crystal form and improving the Foamability of blocked copolymerized polypropylene in supercritical CO2 foaming process. Journal of Polymer Research, 2019, 26, 1.	2.4	7
129	The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS). Journal of Polymer Research, 2020, 27, 1.	2.4	7
130	Zinc pimelate as an effective βâ€nucleating agent for isotactic polypropylene at elevated pressures and under rapid cooling rates. Polymer Crystallization, 2020, 3, e10132.	0.8	7
131	Polyol-pretreated SBA-16 supported Ni-Fe bimetallic catalyst applied in CO methanation at low temperature. Molecular Catalysis, 2021, 512, 111769.	2.0	7
132	Effective Phosphorylation of 2,2′-Methylene-bis(4,6-di- <i>tert</i> -butyl) Phenol in Continuous Flow Reactors. Organic Process Research and Development, 2021, 25, 2060-2070.	2.7	7
133	N, S, O co-doped porous carbons derived from bio-based polybenzoxazine for efficient CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128845.	4.7	7
134	Surface properties and thermal stability of a novel lowâ€surfaceâ€energy polybenzoxazine/clay nanocomposites. Polymer Composites, 2012, 33, 1313-1320.	4.6	6
135	Relationship between Peroxide Initiators and Properties of Styrene Grafted Polypropylene via Reactive Extrusion. Journal of Macromolecular Science - Physics, 2018, 57, 377-394.	1.0	6
136	Study on the Crystallization Activation Energy of Poly (L-lactic acid) Nucleated with P-tert-butylcalix[8]arene. Polymers and Polymer Composites, 2018, 26, 169-175.	1.9	6
137	Promotion of zeolite as dispersion support for properties improvement of \hat{I}_{\pm} nucleating agent in polypropylene. Journal of Polymer Research, 2019, 26, 1.	2.4	6
138	Excellent behaviors of highly dispersed Ni-based catalyst in CO methanation synthesized by in-situ hydrothermal method with carbon quantum dots assisted. Fuel, 2022, 310, 121813.	6.4	6
139	Recovering high value-added substances from corn distillers dried grains with solubles: a semi-continuous countercurrent downstream processing method. Journal of Chemical Technology and Biotechnology, 2016, 91, 1327-1338.	3.2	5
140	The nucleation effect of self-dispersed β-nucleating agent in ethylene-propylene block copolymerized polypropylene. Colloid and Polymer Science, 2018, 296, 1627-1633.	2.1	5
141	Nucleation kinetics of clopidogrel hydrogen sulfate polymorphs in reactive crystallization: Induction period and interfacial tension measurements. Journal of Crystal Growth, 2020, 538, 125610.	1.5	5
142	Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. Journal of Polymer Research, 2021, 28, 1.	2.4	5
143	Investigation on microstructure and thermal properties of graphene-nanoplatelet/palmitic acid composites. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	4
144	Zinc-Catalyzed Alkylation of Aromatic Amines in Continuous Flow. Organic Process Research and Development, 2020, 24, 2078-2084.	2.7	4

#	Article	IF	CITATIONS
145	Fabrication of superhydrophobic bio-based polybenzoxazine/hexagonal boron nitride composite coating for corrosion protection. Progress in Organic Coatings, 2022, 167, 106863.	3.9	4
146	Thermal and Kinetic Research on a Highly Exothermic Condensation Reaction by Powerful Calorimeters. Organic Process Research and Development, 2022, 26, 1365-1377.	2.7	4
147	Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite. Frontiers of Chemical Engineering in China, 2009, 3, 167-171.	0.6	3
148	Synthesis and characterization of polymethylsilsesqui oxane microspheres by the two-step sol-gel method. E-Polymers, 2012, 12, .	3.0	3
149	Structure effect of benzofuranone on the antiâ€oxidation kinetics in polypropylene. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 111-116.	1.5	3
150	Antioxidant mechanism of a 3-arylbenzofuranone containing a 2′-hydroxyl group. Journal of Vinyl and Additive Technology, 2013, 19, 198-202.	3.4	3
151	A kinetic model for <i>in situ</i> coking denitrification of heavy oil with high nitrogen content based on starch using a structure-oriented lumping method. RSC Advances, 2018, 8, 32707-32718.	3.6	3
152	Solubility of clopidogrel hydrogen sulfate polymorphs in ethyl acetate + 2-butanol mixtures at 283.15–313.15 K. Journal of Chemical Thermodynamics, 2019, 139, 105846.	2.0	3
153	Development and Scale-up of the Rapid Synthesis of Triphenyl Phosphites in Continuous Flow. ACS Omega, 2020, 5, 9503-9509.	3.5	3
154	Facile fabrication of non-spherical thiol-functionalized organosilica particles and their adsorption of Ag(I). Journal of Polymer Research, 2021, 28, 1.	2.4	3
155	Curing Kinetics of Main-Chain Benzoxazine Polymers Synthesized in Continuous Flow. Industrial & Engineering Chemistry Research, 2022, 61, 2947-2954.	3.7	3
156	Enhanced crystallization property and equilibrious mechanical properties of a novel self-assembly nucleating system based phosphate for polypropylene. Journal of Polymer Research, 2022, 29, .	2.4	3
157	Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Industrial & Engineering Chemistry Research, 2022, 61, 10945-10954.	3.7	3
158	Effect of hydrogen donating ability of benzofuranone on the antioxidant activity. Science Bulletin, 2010, 55, 27-31.	1.7	2
159	Preparation of uniform rhodamine B-doped poly(3-glycidoxypropylsilsesquioxane) fluorescent microspheres via a sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 77, 145-151.	2.4	2
160	Unique crystallization behavior of isotactic polypropylene in the presence of <scp>l</scp> â€isoleucine and its inhibition and promotion mechanism of nucleation. Journal of Applied Polymer Science, 2018, 135, 45956.	2.6	2
161	Efficient Reduction of Oxazolylâ€Bearing Secondary Anilides to Amines by Nickel atalyzed Hydrosilylation. Asian Journal of Organic Chemistry, 2020, 9, 818-821.	2.7	2
162	Calcium Salt of L-Isoleucine-Phthalate: An α-Nucleating Agent That Enhances the Crystallization Behavior and Mechanical Properties of Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2021, 60, 531-543.	1.0	2

#	Article	IF	CITATIONS
163	Synthesis of non-spherical bridged polysilsesquioxane particles with controllable morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128203.	4.7	2
164	Chain disentanglement in POSS/UHMWPE composites prepared via in-situ polymerization. Journal of Polymer Research, 2022, 29, 1.	2.4	2
165	Enhancement of "in-situ―dispersed NA11 for the mechanical and crystallization properties of polypropylene. Journal of Polymer Research, 2022, 29, 1.	2.4	2
166	The effect of bicyclo[2.2.1]heptâ€5â€eneâ€2,3â€dicarboxylate on the mechanical properties and crystallization behaviors of isotactic polypropylene. Journal of Applied Polymer Science, 2010, 116, 792-800.	2.6	1
167	Thermal degradation behaviours of flame-retardant polycarbonate containing potassium diphenyl sulfonate and polymethylphenylsilsesquioxane. E-Polymers, 2010, 10, .	3.0	1
168	Effect of benzofuranone on degradation and mechanical properties of polypropylene in processing. Journal of Vinyl and Additive Technology, 2018, 24, 124-129.	3.4	1
169	Effect of alkyl group on the chain extension of phosphites in polylactide. Journal of Vinyl and Additive Technology, 2019, 25, 144-148.	3.4	1
170	Credibility Fuzzy Chance Constrained Models for Crude Oil Scheduling and Storage Management. , 2008, , .		0