Rui Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526483/publications.pdf

Version: 2024-02-01

90	1,913	23 h-index	39
papers	citations		g-index
90	90	90	1438
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Determining the optimum fuel concentration for ignition and combustion of semi-coke and bituminous coal blends with rich/lean burner. Journal of the Energy Institute, 2022, 100, 225-236.	2.7	7
2	Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction. Fuel, 2022, 310, 122477.	3.4	23
3	Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy. Energy, 2022, 240, 122827.	4.5	14
4	Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl ₂ Quantum Dots for Efficient and Stable MAPbl ₃ Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	53
5	Dual Modification Engineering via Lanthanideâ€Based Halide Quantum Dots and Black Phosphorus Enabled Efficient Perovskite Solar Cells with High Openâ€Voltage of 1.235ÂV. Advanced Functional Materials, 2022, 32, .	7.8	22
6	Interfacial Modification Engineering with Cs ₃ Cu ₂ I ₅ Nanocrystals for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
7	Learning From Plants: Lycopene Additive Passivation toward Efficient and "Fresh―Perovskite Solar Cells with Oxygen and Ultraviolet Resistance. Advanced Energy Materials, 2022, 12, .	10.2	50
8	Effects of primary air velocity on co-combustion characteristics of bituminous coal and semicoke under reducing-to-oxidizing environment. Fuel Processing Technology, 2022, 233, 107293.	3.7	9
9	Dynamic behaviors of the sodium, calcium and iron release during coal combustion using multi-point LIBS. Combustion and Flame, 2022, 244, 112237.	2.8	10
10	Experimental and density functional theory investigation of the NO reduction mechanism by semichars preheated in Ar and CO2/Ar atmospheres. Fuel, 2022, 326, 125080.	3.4	3
11	Effects of pyrolyzed semi-char blend ratio on coal combustion and pollution emission in a 0.35 MW pulverized coal-fired furnace. Frontiers in Energy, 2021, 15, 78-90.	1.2	9
12	Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel, 2021, 285, 119044.	3.4	24
13	Evolution characteristics of structural nitrogen and the microstructure of anthracite particles in the process of O2/Ar and O2/H2O pre-oxidation. Fuel, 2021, 289, 119860.	3.4	28
14	Numerical study of preheating primary air on pinewood and corn straw co-combustion in a fixed bed using Eulerian-Eulerian approach. Fuel, 2021, 289, 119455.	3.4	5
15	Influence of nozzle height to width ratio on ignition and NOx emission characteristics of semicoke/bituminous coal blends in a 300 kW pulverized coal-fired furnace. Frontiers in Energy, 2021, 15, 431-448.	1.2	8
16	Experimental investigation on the evolution characteristics of anthracite-N and semi-coke reactivity under various O2/H2O pre-oxidation atmospheres. Fuel Processing Technology, 2021, 216, 106725.	3.7	31
17	Char structural evolution characteristics and its correlation with reactivity during the heterogeneous NO reduction in a micro fluidized bed reaction analyzer: The influence of reaction residence time. Fuel, 2021, 296, 120648.	3.4	11
18	Char structural evolution characteristics and its correlation with reactivity during the heterogeneous NO reduction in a micro fluidized bed reaction analyzer: The influence of reaction atmosphere. Fuel, 2021, 303, 121173.	3.4	5

#	Article	IF	CITATIONS
19	Investigation of mineral-element migration upon pyrolysis and quantitative prediction of volatiles in coal using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36, 1399-1409.	1.6	8
20	Investigation of combustion reactivity and NO emission characteristics of chars obtained from the devolatilization of raw and partially dried lignite. Canadian Journal of Chemical Engineering, 2020, 98, 453-464.	0.9	2
21	Study on the combustion behaviours of two high-volatile coal particle streams with high-speed OH-PLIF. Fuel, 2020, 265, 116956.	3.4	23
22	Experimental investigation on the ignition and combustion characteristics of pyrolyzed char and bituminous coal blends. Fuel, 2020, 281, 118732.	3.4	20
23	Oscillation characterization of volatile combustion of single coal particles with multi-species optical diagnostic techniques. Fuel, 2020, 282, 118845.	3.4	10
24	Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed. Energy, 2020, 210, 118481.	4.5	5
25	Experimental Investigation for Co-Combustion Characteristics of Semi-Coke and Bituminous Coal in a 3 MWth Tangential Combustion Facility. Journal of Thermal Science, 2020, 29, 1655-1662.	0.9	14
26	Investigation of Heterogeneous NO Reduction by Biomass Char and Coal Char Blends in a Microfluidized Bed Reaction Analyzer. Energy & Energy & Samp; Fuels, 2020, 34, 6317-6325.	2.5	13
27	A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	6
28	Emissions From Oxy-Combustion of Raw and Torrefied Biomass. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	12
29	Effect of H2O on char-nitrogen conversion during char-O2/H2O combustion under high-temperature entrained flow conditions. Combustion and Flame, 2019, 207, 391-405.	2.8	26
30	Numerical and Experimental Assessment of a Novel Multinozzle Burner with CO ₂ Diluent to Improve the Emissions from a Swirling Flame in a Combustion Chamber. Energy & Diluent 7869-7885.	2.5	4
31	Statistical Analysis of Volatile Combustion Time-Characteristics of Single Coal Particles Using High-Speed OH-PLIF. Energy & Energy & 2019, 33, 12742-12748.	2.5	6
32	Effect of reaction conditions on the evolution of surface functional groups in O2/H2O combustion process of demineralized coal char. Fuel Processing Technology, 2019, 195, 106144.	3.7	29
33	Effects of reaction condition on NO emission characteristic, surface behavior and microstructure of demineralized char during O2/H2O combustion process. Fuel, 2019, 253, 1424-1435.	3.4	13
34	Effects of Reaction Condition on the Emission Characteristics of Fuel-N during the O ₂ /H ₂ O Combustion Process of Demineralized Coal. Energy & En	2.5	6
35	Experimental Study on Ignition and Combustion Characteristics of Pyrolyzed Char in an O ₂ -Enriched Atmosphere with Multiple Optical Diagnostic Techniques. Energy & Sump; Fuels, 2019, 33, 5682-5694.	2.5	13
36	Effect of steam concentration on demineralized coal char surface behaviors and structural characteristics during the oxy-steam combustion process. Energy, 2019, 174, 339-349.	4.5	25

#	Article	IF	CITATIONS
37	Effects of Upgrading Treatment on the Physicochemical Structure, Moisture Re-Adsorption Ability, and NOx Emission Characteristic of Lignite Particles. Energy & Samp; Fuels, 2019, 33, 4070-4078.	2.5	9
38	Reaction kinetics of char-O2/H2O combustion under high-temperature entrained flow conditions. Fuel, 2019, 243, 172-184.	3.4	28
39	Effects of lignite dewatering treatment on the surface behaviour and NO emission characteristics during the combustion process. Canadian Journal of Chemical Engineering, 2019, 97, 1418-1428.	0.9	5
40	Effects of Air Flowrate on the Combustion and Emissions of Blended Corn Straw and Pinewood Wastes. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	8
41	NO Reduction and Emission Characteristics of Coal/Char Mixtures in a Microfluidized Bed Reaction Analyzer. Energy & Ener	2.5	7
42	Release of Alkalis and Chlorine from Combustion of Waste Pinewood in a Fixed Bed. Energy & Energy & Fuels, 2019, 33, 1256-1266.	2.5	7
43	Effect of Stoichiometric Ratio on Char-Nitrogen Conversion under High-Temperature Entrained Flow Combustion Conditions. Energy &	2.5	7
44	Assessment of Chopped Corn Straw Lengths for Combustion in a Fixed Bed Using a Numerical Model. Energy & Energy	2.5	5
45	Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach. Energy, 2018, 151, 501-519.	4 . 5	17
46	Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	19
47	Interaction of bacteria and archaea in a microbial fuel cell with ITO anode. RSC Advances, 2018, 8, 28487-28495.	1.7	13
48	Investigation of demineralized coal char surface behaviour and reducing characteristics after partial oxidative treatment under an O2 atmosphere. Fuel, 2018, 233, 658-668.	3.4	16
49	Effects of corn ratio with pine on biomass co-combustion characteristics in a fixed bed. Applied Thermal Engineering, 2018, 142, 30-42.	3.0	27
50	Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content. Energy, 2018, 158, 192-203.	4.5	25
51	Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Applied Physics Letters, 2017, 110, .	1.5	107
52	Computer-Free Group-Addition Method for $p < i > K < / i > < sub > a < / sub > Prediction of 73 Amines for CO < sub > 2 < / sub > Capture. Journal of Chemical & CO < sub > 2 < / sub > Capture. Journal of Chemical & CO < sub > 2 < / sub > Capture.$	1.0	8
53	Stabilization of a premixed methane-air flame with a high repetition nanosecond laser-induced plasma. Optics and Laser Technology, 2017, 92, 24-31.	2.2	8
54	Effect of the COMBDry Dewatering Process on Combustion Reactivity and Oxygen-Containing Functional Groups of Dried Lignite. Energy & Samp; Fuels, 2017, 31, 4488-4498.	2.5	12

#	Article	IF	Citations
55	Repetitive Laser-Induced Plasma Ignition and Assisted Combustion of Premixed Methane/Air Flame. Combustion Science and Technology, 2017, 189, 1681-1697.	1.2	11
56	Effect of Oxygen Concentration on NO Formation during Coal Char Combustion. Energy & Camp; Fuels, 2017, 31, 7502-7509.	2.5	19
57	Hydrogen chloride emissions from combustion of raw and torrefied biomass. Fuel, 2017, 200, 37-46.	3.4	54
58	Characterization of coal char surface behavior after a heterogeneous oxidative treatment. Fuel, 2017, 210, 154-164.	3.4	21
59	Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Advances, 2017, 7, 40303-40310.	1.7	58
60	Parametric studies on corn combustion characteristics in a fixed bed: Primary air flow rate and different corn lengths. Applied Thermal Engineering, 2017, 126, 702-716.	3.0	17
61	Investigation of the NO Reduction Characteristics of Coal Char at Different Conversion Degrees under an NO Atmosphere. Energy & Samp; Fuels, 2017, 31, 8722-8732.	2.5	30
62	Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures. Energy &	2.5	20
63	Effect of Char Particle Size on NO Release during Coal Char Combustion. Energy & Ene	2.5	17
64	Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 2017, 188, 310-323.	3.4	163
65	Comparison between tape casting YAG/Nd:YAG/YAG and Nd:YAG ceramic lasers. , 2017, , .		2
66	Ignition and Stabilization of a Premixed Methane/air Flame with Repetitive Laser-Induced Plasmas. , 2017,		1
67	Planar Laser-Based QEPAS Trace Gas Sensor. Sensors, 2016, 16, 989.	2.1	11
68	Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma. Optics Express, 2016, 24, 25362.	1.7	21
69	Anode biofilm communities and the performance of microbial fuel cells with different reactor configurations. RSC Advances, 2016, 6, 85149-85155.	1.7	8
70	Laser ablation plasma-assisted stabilization of premixed methane/air flame. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	4
71	Influence of simulated MSW sizes on the combustion process in a fixed bed: CFD and experimental approaches. Waste Management, 2016, 49, 272-286.	3.7	33
72	Effect of ash content on the combustion process of simulated MSW in the fixed bed. Waste Management, 2016, 48, 236-249.	3.7	21

#	Article	IF	Citations
73	Quartz Enhanced Photoacoustic Spectroscopy Based Trace Gas Sensors Using Different Quartz Tuning Forks. Sensors, 2015, 15, 7596-7604.	2.1	33
74	Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed. Journal of Environmental Management, 2015, 157, 111-117.	3.8	15
75	Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Waste Management, 2015, 39, 166-178.	3.7	50
76	Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresource Technology, 2015, 175, 68-74.	4.8	138
77	Stabilization of Premixed High Flow Speed Methane/air Flames Using a Nanosecond Laser Induced Plasma. , 2015, , .		2
78	Laser Spark Ignition of LOX/LCH4 Propellant on an Optically-Accessible Combustor., 2015,,.		1
79	Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 1. Air staging. Fuel Processing Technology, 2014, 126, 266-275.	3.7	64
80	Pore development and combustion behavior of gasified semi-char in a drop tube furnace. Fuel Processing Technology, 2013, 111, 42-54.	3.7	24
81	Stabilization of a premixed CH_4/O_2/N_2 flame using femtosecond laser-induced plasma. Optics Letters, 2012, 37, 2106.	1.7	8
82	Numerical Simulation of Simultaneous NO and SO2 Reduction by Reburning. , 2012, , .		0
83	Plasma-assisted combustion of methane using a femtosecond laser. Optics Letters, 2011, 36, 1930.	1.7	9
84	Combustion gas and NO emission characteristics of hazardous waste mixture particles in a fixed bed. Korean Journal of Chemical Engineering, 2011, 28, 778-787.	1.2	0
85	Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma. Applied Physics Letters, 2010, 97, 011503.	1.5	12
86	Effects of bias combustion on volatile nitrogen transformation. Asia-Pacific Journal of Chemical Engineering, 2009, 5, 473-478.	0.8	5
87	Combustion characteristics of different parts of corn straw and NO formation in a fixed bed. Bioresource Technology, 2008, 99, 2956-2963.	4.8	60
88	Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Bioresource Technology, 2008, 99, 7238-7246.	4.8	67
89	Mass transfer and reaction process of the wet desulfurization reactor with falling film by cross-flow scrubbing. Korean Journal of Chemical Engineering, 2007, 24, 481-488.	1.2	6
90	Gas-particle flow and combustion in the near-burner zone of the swirl-stabilized pulverized coal burner. Combustion Science and Technology, 2003, 175, 1979-2014.	1.2	29