Pouria Assari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. Journal of Computational and Applied Mathematics, 2013, 239, 72-92.	1.1	72
2	Chebyshev Wavelet Method for Numerical Solution of Fredholm Integral Equations of the First Kind. Mathematical Problems in Engineering, 2010, 2010, 1-17.	0.6	59
3	A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. Journal of Computational and Applied Mathematics, 2014, 267, 160-181.	1.1	53
4	The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Engineering With Computers, 2017, 33, 853-870.	3.5	51
5	A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numerical Algorithms, 2014, 67, 423-455.	1.1	46
6	A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Applied Mathematical Modelling, 2013, 37, 9269-9294.	2.2	45
7	The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Applied Numerical Mathematics, 2014, 81, 76-93.	1.2	41
8	A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. European Physical Journal Plus, 2017, 132, 1.	1.2	34
9	Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Applied Numerical Mathematics, 2018, 123, 137-158.	1.2	33
10	A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. Journal of Computational and Applied Mathematics, 2018, 333, 362-381.	1.1	27
11	A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations. Applied Mathematics and Computation, 2019, 350, 249-265.	1.4	25
12	A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Applied Numerical Mathematics, 2019, 143, 276-299.	1.2	25
13	A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Applied Mathematics and Computation, 2017, 315, 424-444.	1.4	24
14	The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Applied Numerical Mathematics, 2018, 131, 140-157.	1.2	21
15	On the numerical solution of Fredholm integral equations utilizing the local radial basis function method. International Journal of Computer Mathematics, 2019, 96, 1416-1443.	1.0	18
16	Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels. Engineering With Computers, 2019, 35, 175-190.	3.5	16
17	The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines. Engineering With Computers, 2019, 35, 1391-1408.	3.5	13
18	On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Engineering With Computers, 2019, 35, 893-916.	3.5	10

Pouria Assari

#	Article	IF	CITATIONS
19	Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions. International Journal of Computer Mathematics, 2019, 96, 170-198.	1.0	10
20	Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Applicable Analysis, 2019, 98, 2064-2084.	0.6	9
21	The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions. Filomat, 2019, 33, 667-682.	0.2	9
22	Solving weakly singular integral equations utilizing the meshless local discrete collocation technique. AEJ - Alexandria Engineering Journal, 2018, 57, 2497-2507.	3.4	8
23	A meshless local discrete collocation (MLDC) scheme for solving 2â€dimensional singular integral equations with logarithmic kernels. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2018, 31, e2311.	1.2	8
24	Local multiquadric scheme for solving twoâ€dimensional weakly singular Hammerstein integral equations. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2488.	1.2	8
25	A numerical scheme for solving a class of logarithmic integral equations arisen from two-dimensional Helmholtz equations using local thin plate splines. Applied Mathematics and Computation, 2019, 356, 157-172.	1.4	7
26	Local radial basis function scheme for solving a class of fractional integroâ€differential equations based on the use of mixed integral equations. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2019, 99, e201800236.	0.9	6
27	The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method. Engineering With Computers, 2021, 37, 21-38.	3.5	6
28	The Numerical Solution Of Nonlinear Fredholm-hammerstein Integral Equations Of The Second Kind Utilizing Chebyshev Wavelets. Journal of Mathematics and Computer Science, 2014, 10, 235-246.	0.5	5
29	A Local Galerkin Integral Equation Method for Solving Integro-differential Equations Arising in Oscillating Magnetic Fields. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.4	4
30	The thin plate spline collocation method for solving integro-differential equations arisen from the charged particle motion in oscillating magnetic fields. Engineering Computations, 2018, 35, 1706-1726.	0.7	4
31	A MESHLESS LOCAL GALERKIN METHOD FOR THE NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATIONS BASED ON THE MOVING LEAST SQUARES TECHNIQUE. Journal of Applied Analysis and Computation, 2019, 9, 75-104.	0.2	3
32	The numerical solution of nonlinear integral equations of the second kind using thin plate spline discrete collocation method. Ricerche Di Matematica, 2017, 66, 469-489.	0.6	2
33	Local Gaussian-Collocation Scheme to Approximate the Solution of Nonlinear Fractional Differential Equations Using Volterra Integral Equations. Journal of Computational Mathematics, 2021, 39, 261-282.	0.2	2
34	On the numerical solution of nonlinear integral equations on non-rectangular domains utilizing thin plate spline collocation method. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2019, 129, 1.	0.2	0
35	A MESHLESS LOCAL GALERKIN INTEGRAL EQUATION METHOD FOR SOLVING A TYPE OF DARBOUX PROBLEMS BASED ON RADIAL BASIS FUNCTIONS. ANZIAM Journal, 0, , 1-24.	0.3	0
36	A meshless local Galerkin integral equation method for solving a type of Darboux problems based on the radial basis functions. ANZIAM Journal, 0, 63, 469-492.	0.0	0