Joan Seoane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526175/publications.pdf

Version: 2024-02-01

43973 39575 15,971 106 48 94 citations h-index g-index papers 111 111 111 24924 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual inhibition of TGFâ€Î² and PDâ€L1: a novel approach to cancer treatment. Molecular Oncology, 2022, 16, 2117-2134.	2.1	53
2	Liquid biopsy in gliomas: A RANO review and proposals for clinical applications. Neuro-Oncology, 2022, 24, 855-871.	0.6	38
3	Cerebrospinal fluid liquid biopsies for medulloblastoma. Nature Reviews Clinical Oncology, 2022, 19, 73-74.	12.5	O
4	Activity and Resistance of a Brain-Permeable Paradox Breaker BRAF Inhibitor in Melanoma Brain Metastasis. Cancer Research, 2022, 82, 2552-2564.	0.4	6
5	Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica, 2021, 106, 513-521.	1.7	75
6	WORLD CANCER RESEARCH DAY: A Call to Action for a Coordinated International Research Effort to Prevent, Diagnose, and Treat Cancer. Clinical Cancer Research, 2021, 27, 963-966.	3.2	5
7	Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment. Nature Communications, 2021, 12, 1503.	5.8	45
8	A CT-based Radiomics Signature Is Associated with Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Radiology, 2021, 299, 109-119.	3.6	54
9	ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers, 2021, 13, 1989.	1.7	26
10	A single-cell tumor immune atlas for precision oncology. Genome Research, 2021, 31, 1913-1926.	2.4	87
11	Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition. Journal of Neuro-Oncology, 2020, 149, 13-25.	1.4	11
12	Clinical development of therapies targeting TGF \hat{l}^2 : current knowledge and future perspectives. Annals of Oncology, 2020, 31, 1336-1349.	0.6	157
13	Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nature Communications, 2020, 11, 5376.	5 . 8	67
14	Cerebrospinal fluid circulating tumour DNA as a liquid biopsy for central nervous system malignancies. Current Opinion in Neurology, 2020, 33, 736-741.	1.8	4
15	The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Science Translational Medicine, 2020, 12, .	5. 8	46
16	Liquid biopsies for diagnosing and monitoring primary tumors of the central nervous system. Cancer Letters, 2020, 480, 24-28.	3.2	33
17	Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Frontiers in Immunology, 2020, 11, 605170.	2.2	101
18	How liquid biopsies can change clinical practice in oncology. Annals of Oncology, 2019, 30, 1580-1590.	0.6	231

#	Article	IF	CITATIONS
19	Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathologica, 2019, 138, 1053-1074.	3.9	106
20	LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nature Communications, 2019, 10, 2416.	5.8	150
21	The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Reports, 2019, 27, 2690-2708.e10.	2.9	95
22	Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Annals of Oncology, 2019, 30, 211-218.	0.6	96
23	Abstract CN08-03: LIF in cancer. , 2019, , .		0
24	Molecular Diagnosis of Diffuse Gliomas through Sequencing of Cell-Free Circulating Tumor DNA from Cerebrospinal Fluid. Clinical Cancer Research, 2018, 24, 2812-2819.	3.2	128
25	Early evolutionary divergence between papillary and anaplastic thyroid cancers. Annals of Oncology, 2018, 29, 1454-1460.	0.6	44
26	Genetic heterogeneity and actionable mutations in HER2-positive primary breast cancers and their brain metastases. Oncotarget, 2018, 9, 20617-20630.	0.8	36
27	p95HER2–T cell bispecific antibody for breast cancer treatment. Science Translational Medicine, 2018, 10, .	5.8	59
28	The right compound for the right target: tackling RET. Annals of Oncology, 2018, 29, 1623-1625.	0.6	5
29	Subjugation of TGFÎ ² Signaling by Human Papilloma Virus in Head and Neck Squamous Cell Carcinoma Shifts DNA Repair from Homologous Recombination to Alternative End Joining. Clinical Cancer Research, 2018, 24, 6001-6014.	3.2	71
30	TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. Journal of Clinical Investigation, 2018, 128, 3887-3905.	3.9	79
31	The integrated genomic and immune landscapes of lethal metastatic breast cancer (MBC) Journal of Clinical Oncology, 2018, 36, 1009-1009.	0.8	2
32	A phase 1 study of MSC-1, a humanized anti-LIF monoclonal antibody, in patients with advanced solid tumors Journal of Clinical Oncology, 2018, 36, TPS2602-TPS2602.	0.8	4
33	Abstract LB-B34: LIF as a novel cancer immunotherapy target: modulating the tumor microenvironment with MSC-1, a humanized anti-LIF monoclonal antibody. , 2018 , , .		0
34	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	12.8	527
35	TGF- \hat{l}^2 Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022277.	2.3	345
36	Division hierarchy leads to cell heterogeneity. Nature, 2017, 549, 164-166.	13.7	14

#	Article	IF	Citations
37	An antisense oligonucleotide targeting TGF- \hat{l}^2 2 inhibits lung metastasis and induces CD86 expression in tumor-associated macrophages. Annals of Oncology, 2017, 28, 2278-2285.	0.6	25
38	Report from the II Melanoma Translational Meeting of the Spanish Melanoma Group (GEM). Annals of Translational Medicine, 2017, 5, 390-390.	0.7	0
39	The Taming of the TAMs. Trends in Cell Biology, 2016, 26, 562-563.	3.6	8
40	Relative bioavailability of three formulations of galunisertib administered as monotherapy in patients with advanced or metastatic cancer. Drugs in Context, 2016 , 5 , 1 -8.	1.0	2
41	USP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination. Scientific Reports, 2015, 5, 14733.	1.6	50
42	Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nature Communications, 2015, 6, 8839.	5.8	605
43	Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor- \hat{l}^2 receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Investigational New Drugs, 2015, 33, 357-370.	1.2	90
44	First-in-Human Dose Study of the Novel Transforming Growth Factor-Î ² Receptor I Kinase Inhibitor LY2157299 Monohydrate in Patients with Advanced Cancer and Glioma. Clinical Cancer Research, 2015, 21, 553-560.	3.2	199
45	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
46	Blockade of the SNARE Protein Syntaxin 1 Inhibits Glioblastoma Tumor Growth. PLoS ONE, 2015, 10, e0119707.	1.1	30
47	MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 2015, 6, 37269-37280.	0.8	135
48	Genomic landscape of anaplastic thyroid cancer Journal of Clinical Oncology, 2015, 33, 6033-6033.	0.8	0
49	Early drug development in advanced gynecologic cancer based on genetic tumor profiling Journal of Clinical Oncology, 2015, 33, 5562-5562.	0.8	0
50	Abstract 930: Analysis of cell-free tumor DNA in cerebrospinal fluid to characterize and monitor the genetic alterations of brain tumors. Cancer Research, 2015, 75, 930-930.	0.4	2
51	Cross-Talk Between the Notch and Transforming Growth Factor-Î' (Tgf-&Bgr) Signaling Pathways in Glioma Initiating Cells (Gics). Annals of Oncology, 2014, 25, iv139.	0.6	0
52	Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications, 2014, 5, 4632.	5.8	144
53	Active CREB1 Promotes a Malignant TGFβ2 Autocrine Loop in Glioblastoma. Cancer Discovery, 2014, 4, 1230-1241.	7.7	63
54	Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature. Cancers, 2014, 6, 226-239.	1.7	177

#	Article	lF	Citations
55	The challenge of intratumour heterogeneity in precision medicine. Journal of Internal Medicine, 2014, 276, 41-51.	2.7	66
56	Escaping Out of the Brain. Cancer Discovery, 2014, 4, 1259-1261.	7.7	12
57	Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research. Cancer Discovery, 2014, 4, 998-1013.	7.7	1,341
58	Gremlins Sabotage the Mechanisms of Cancer Stem Cell Differentiation. Cancer Cell, 2014, 25, 716-717.	7.7	10
59	Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Annals of Oncology, 2014, 25, 1729-1735.	0.6	308
60	Establishing the origin of metastatic deposits in the setting of multiple primary malignancies: The role of massively parallel sequencing. Molecular Oncology, 2014, 8, 150-158.	2.1	37
61	New approach to cancer therapy based on a molecularly defined cancer classification. Ca-A Cancer Journal for Clinicians, 2014, 64, 70-74.	157.7	22
62	Brain metastasis: New opportunities to tackle therapeutic resistance. Molecular Oncology, 2014, 8, 1120-1131.	2.1	37
63	Relevance of IGFBP2 proteolysis in glioma and contribution of the extracellular protease ADAMTS1. Oncotarget, 2014, 5, 4295-4304.	0.8	10
64	Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nature Reviews Clinical Oncology, 2013, 10, 377-389.	12.5	164
65	Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel <i>HER2</i> V659E Mutation. Cancer Discovery, 2013, 3, 1238-1244.	7.7	43
66	Integrated data review of the first-in-human dose (FHD) study evaluating safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral transforming growth factor-beta (TGF-AŸ) receptor I kinase inhibitor, LY2157299 monohydrate (LY) Journal of Clinical Oncology, 2013, 31, 2016-2016.	0.8	12
67	Abstract PD4-5: Longitudinal massively parallel sequencing analysis of circulating cell-free tumor DNA: A feasibility study. , 2013, , .		0
68	400 CREB Regulates the Autocrine Induction of TGF-52 by TGF-b in Glioblastoma. European Journal of Cancer, 2012, 48, S97.	1.3	1
69	407 Nur77 is a Tumor Suppressor That Mediates P53 Antioncogenic Activities. European Journal of Cancer, 2012, 48, S98.	1.3	0
70	417 Exploring TRIM59 Oncogenic Function. European Journal of Cancer, 2012, 48, S101.	1.3	0
71	859 TGF-b Inhibits TMEFF2 Expression in Glioma Cells. European Journal of Cancer, 2012, 48, S207.	1.3	0
72	900 FoxG1 Confers Resistance to PI3K Inhibitors Through the Repression of FoxO Activity. European Journal of Cancer, 2012, 48, S218.	1.3	0

#	Article	IF	CITATIONS
73	Noncyclam Tetraamines Inhibit CXC Chemokine Receptor Type 4 and Target Glioma-Initiating Cells. Journal of Medicinal Chemistry, 2012, 55, 7560-7570.	2.9	10
74	USP15 stabilizes TGF- \hat{l}^2 receptor I and promotes oncogenesis through the activation of TGF- \hat{l}^2 signaling in glioblastoma. Nature Medicine, 2012, 18, 429-435.	15.2	342
75	Circulating tumour cells in early breast cancer. Lancet Oncology, The, 2012, 13, e370.	5.1	2
76	The oral transforming growth factor-beta (TGF-ß) receptor I kinase inhibitor LY2157299 plus lomustine in patients with treatment-refractory malignant glioma: The first human dose study Journal of Clinical Oncology, 2012, 30, 2042-2042.	0.8	5
77	TGF- \hat{l}^2 Receptor Inhibitors Target the CD44high/ld1high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 2010, 18, 655-668.	7.7	534
78	NO Signals from the Cancer Stem Cell Niche. Cell Stem Cell, 2010, 6, 97-98.	5.2	1
79	TGFÎ ² and cancer initiating cells. Cell Cycle, 2009, 8, 3787-3788.	1.3	7
80	Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Experimental Cell Research, 2009, 315, 3004-3013.	1.2	30
81	TGF-Î ² Increases Glioma-Initiating Cell Self-Renewal through the Induction of LIF in Human Glioblastoma. Cancer Cell, 2009, 15, 315-327.	7.7	489
82	The TGFß pathway as a therapeutic target in cancer. Clinical and Translational Oncology, 2008, 10, 14-19.	1.2	48
83	The TGF-beta pathway in cancer. European Journal of Cancer, Supplement, 2008, 6, 121.	2.2	0
84	TGF- \hat{l}^2 signalling-related markers in cancer patients with bone metastasis. Biomarkers, 2008, 13, 217-236.	0.9	60
85	Phosphatidylinositol 3-Kinase Hyperactivation Results in Lapatinib Resistance that Is Reversed by the mTOR/Phosphatidylinositol 3-Kinase Inhibitor NVP-BEZ235. Cancer Research, 2008, 68, 9221-9230.	0.4	474
86	TGF-l ² Signaling in Homeostasis and Cancer. , 2008, , 23-35.		0
87	High TGFÎ ² -Smad Activity Confers Poor Prognosis in Glioma Patients and Promotes Cell Proliferation Depending on the Methylation of the PDGF-B Gene. Cancer Cell, 2007, 11, 147-160.	7.7	446
88	Escaping from the TGFÂ anti-proliferative control. Carcinogenesis, 2006, 27, 2148-2156.	1.3	136
89	A FoxO-Smad synexpression group in human keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12747-12752.	3.3	221
90	Smad transcription factors. Genes and Development, 2005, 19, 2783-2810.	2.7	2,063

#	Article	IF	CITATIONS
91	Combination of the mammalian target of rapamycin (mTOR) inhibitor everolimus (E) with the insulin like growth factor-1-receptor (IGF-1-R) inhibitor NVP-AEW-541: A mechanistic based anti-tumor strategy. Journal of Clinical Oncology, 2005, 23, 3112-3112.	0.8	32
92	p21WAF1/Cip1 at the Switch Between the Anti-Oncogenic and Oncogenic Faces of TGF-beta. Cancer Biology and Therapy, 2004, 3, 226-227.	1.5	18
93	Opposite Smad and Chicken Ovalbumin Upstream Promoter Transcription Factor Inputs in the Regulation of the Collagen VII Gene Promoter by Transforming Growth Factor-Î ² . Journal of Biological Chemistry, 2004, 279, 23759-23765.	1.6	18
94	Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation. Cell, 2004, 117, 211-223.	13.5	903
95	Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 2002, 419, 729-734.	13.7	618
96	Crystal Structure of a Phosphorylated Smad2. Molecular Cell, 2001, 8, 1277-1289.	4.5	271
97	Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biology, 2001, 3, 392-399.	4.6	504
98	$TGF\hat{l}^2$ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biology, 2001, 3, 400-408.	4.6	448
99	The Role of the Regulatory Protein of Glucokinase in the Glucose Sensory Mechanism of the Hepatocyte. Journal of Biological Chemistry, 2000, 275, 10597-10603.	1.6	92
100	OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways. Cell, 2000, 100, 229-240.	13.5	399
101	Glucokinase Overexpression Restores Glucose Utilization and Storage in Cultured Hepatocytes from Male Zucker Diabetic Fatty Rats. Journal of Biological Chemistry, 1999, 274, 31833-31838.	1.6	34
102	Myc Downregulation by Transforming Growth Factor \hat{l}^2 Required for Activation of the p15 ^{Ink4b} G ₁ Arrest Pathway. Molecular and Cellular Biology, 1999, 19, 5913-5922.	1.1	214
103	Metabolic Impact of Adenovirus-mediated Overexpression of the Glucose-6-phosphatase Catalytic Subunit in Hepatocytes. Journal of Biological Chemistry, 1997, 272, 26972-26977.	1.6	72
104	Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver. Biochemical Society Transactions, 1997, 25, 157-160.	1.6	20
105	Differential Metabolic Effects of Adenovirus-mediated Glucokinase and Hexokinase I Overexpression in Rat Primary Hepatocytes. Journal of Biological Chemistry, 1996, 271, 20524-20530.	1.6	82
106	Glucose 6-Phosphate Produced by Glucokinase, but Not Hexokinase I, Promotes the Activation of Hepatic Glycogen Synthase. Journal of Biological Chemistry, 1996, 271, 23756-23760.	1.6	102