
Jianwen Que

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5525734/publications.pdf Version: 2024-02-01

LIANWEN OHE

#	Article	IF	CITATIONS
1	Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development (Cambridge), 2007, 134, 2521-2531.	2.5	463
2	A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021, 595, 114-119.	27.8	411
3	Multiple roles for Sox2 in the developing and adult mouse trachea. Development (Cambridge), 2009, 136, 1899-1907.	2.5	272
4	Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16626-16630.	7.1	228
5	Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation, 2006, 74, 422-437.	1.9	226
6	Transitional basal cells at the squamous–columnar junction generate Barrett's oesophagus. Nature, 2017, 550, 529-533.	27.8	179
7	Sox2 Cooperates with Inflammation-Mediated Stat3 Activation in the Malignant Transformation of Foregut Basal Progenitor Cells. Cell Stem Cell, 2013, 12, 304-315.	11.1	164
8	Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nature Communications, 2017, 8, 1758.	12.8	155
9	Pathogenesis and Cells of Origin of Barrett's Esophagus. Gastroenterology, 2019, 157, 349-364.e1.	1.3	104
10	SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Molecular Cancer, 2017, 16, 62.	19.2	98
11	BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. Journal of Clinical Investigation, 2015, 125, 1557-1568.	8.2	90
12	mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. Cell Stem Cell, 2017, 21, 806-818.e5.	11.1	87
13	Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Developmental Biology, 2012, 369, 54-64.	2.0	72
14	BMP signaling in the development of the mouse esophagus and forestomach. Development (Cambridge), 2010, 137, 4171-4176.	2.5	71
15	3D Modeling of Esophageal Development using Human PSC-Derived Basal Progenitors Reveals a Critical Role for Notch Signaling. Cell Stem Cell, 2018, 23, 516-529.e5.	11.1	70
16	MCM4 and MCM7, potential novel proliferation markers, significantly correlated with Ki-67, Bmi1, and cyclin E expression in esophageal adenocarcinoma, squamous cell carcinoma, and precancerous lesions. Human Pathology, 2016, 57, 126-135.	2.0	63
17	Development and stem cells of the esophagus. Seminars in Cell and Developmental Biology, 2017, 66, 25-35.	5.0	61
18	Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Letters, 2019, 458, 21-28.	7.2	59

Jianwen Que

#	Article	IF	CITATIONS
19	Distinct stem/progenitor cells proliferate to regenerate the trachea, intrapulmonary airways and alveoli in COVID-19 patients. Cell Research, 2020, 30, 705-707.	12.0	54
20	The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal–esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 419-430.	5.9	51
21	FOXO1: Another avenue for treating digestive malignancy?. Seminars in Cancer Biology, 2018, 50, 124-131.	9.6	47
22	Generation and Characterization of Patientâ€Derived Head and Neck, Oral, and Esophageal Cancer Organoids. Current Protocols in Stem Cell Biology, 2020, 53, e109.	3.0	45
23	Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut, 2017, 66, 1197-1207.	12.1	43
24	Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation. Developmental Cell, 2019, 51, 675-683.e4.	7.0	42
25	Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell, 2021, 28, 1343-1361.	11.1	42
26	BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annual Review of Physiology, 2020, 82, 251-273.	13.1	39
27	Gpr177 regulates pulmonary vasculature development. Development (Cambridge), 2013, 140, 3589-3594.	2.5	35
28	Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Research, 2019, 47, 11114-11131.	14.5	35
29	A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Research, 2019, 47, 7333-7347.	14.5	35
30	Exclusion of <i>Dlx5/6</i> expression from the distal-most mandibular arches enables BMP-mediated specification of the distal cap. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7563-7568.	7.1	30
31	Targeting SOX2 Protein with Peptide Aptamers for Therapeutic Gains against Esophageal Squamous Cell Carcinoma. Molecular Therapy, 2020, 28, 901-913.	8.2	28
32	Wnt/Fgf crosstalk is required for the specification of basal cells in the trachea. Development (Cambridge), 2019, 146, .	2.5	27
33	Caspase-4/11 exacerbates disease severity in SARS–CoV-2 infection by promoting inflammation and immunothrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202012119.	7.1	25
34	Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2020, 145, 239-254.e2.	2.9	24
35	Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis. Journal of Hepatology, 2020, 73, 361-370.	3.7	24
36	Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett's related esophageal adenocarcinoma cells. Redox Biology, 2021, 43, 101970.	9.0	24

Jianwen Que

#	Article	IF	CITATIONS
37	Pharmacological targeting of p38 MAP-Kinase 6 (MAP2K6) inhibits the growth of esophageal adenocarcinoma. Cellular Signalling, 2018, 51, 222-232.	3.6	20
38	The development and stem cells of the esophagus. Development (Cambridge), 2021, 148, .	2.5	20
39	The antioxidant response in Barrett's tumorigenesis: A double-edged sword. Redox Biology, 2021, 41, 101894.	9.0	20
40	Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development (Cambridge), 2019, 146, .	2.5	19
41	Novel candidate genes in esophageal atresia/tracheoesophageal fistula identified by exome sequencing. European Journal of Human Genetics, 2021, 29, 122-130.	2.8	17
42	Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers, 2021, 13, 1878.	3.7	14
43	VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Developmental Cell, 2021, 56, 1646-1660.e5.	7.0	13
44	Relationship of the Esophageal Microbiome and Tissue Gene Expression and Links to the Oral Microbiome: A Randomized Clinical Trial. Clinical and Translational Gastroenterology, 2020, 11, e00235.	2.5	13
45	Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells and Development, 2020, 29, 953-966.	2.1	11
46	Diversified Application of Barcoded PLATO (PLATO-BC) Platform for Identification of Protein Interactions. Genomics, Proteomics and Bioinformatics, 2019, 17, 319-331.	6.9	5
47	Silencing of miR490–3p by H. pylori activates DARPP-32 and induces resistance to gefitinib. Cancer Letters, 2020, 491, 87-96.	7.2	5
48	Disruption of respiratory epithelial basement membrane in COVID-19 patients. Molecular Biomedicine, 2021, 2, 8.	4.4	4
49	Epithelial Wntless regulates postnatal alveologenesis. Development (Cambridge), 2022, 149, .	2.5	4
50	Notum balances Wnt signaling during tracheal cartilage development. Developmental Biology, 2018, 437, 61-62.	2.0	2
51	Re-assessing stem cells in the stomach—one story two tales. Annals of Translational Medicine, 2017, 5, 51-51.	1.7	0
52	Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation. SSRN Electronic Journal, 0, , .	0.4	0