
Ioanna Kalantzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5525138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling the impact of finfish aquaculture waste on the environmental status in an Eastern Mediterranean Allocated Ηone for Aquaculture. Continental Shelf Research, 2022, 234, 104647.	0.9	4
2	Comparative study of Chronic Ulcerative Dermatopathy in cultured meagre, Argyrosomus regius. Aquaculture, 2022, 556, 738301.	1.7	0
3	An IMTA in Greece: Co-Culture of Fish, Bivalves, and Holothurians. Journal of Marine Science and Engineering, 2022, 10, 776.	1.2	10
4	Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife?. Science of the Total Environment, 2021, 764, 142843.	3.9	27
5	Metals in tissues of marine fish from the Thermaikos Gulf, Eastern Mediterranean Sea: Detection of changes with trophic level. Marine Pollution Bulletin, 2021, 173, 113024.	2.3	16
6	Experiment design and bacterial abundance control extracellular H ₂ 0 ₂ concentrations during fourÂseries of mesocosm experiments. Biogeosciences, 2020, 17, 1309-1326.	1.3	6
7	Ecotoxicity of silver nanoparticles on plankton organisms: a review. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	28
8	Microplastics increase the marine production of particulate forms of organic matter. Environmental Research Letters, 2019, 14, 124085.	2.2	45
9	Elemental distribution in the different tissues of brood stock from Greek hatcheries. Aquaculture, 2019, 503, 175-185.	1.7	17
10	Metals in sardine and anchovy from Greek coastal areas: Public health risk and nutritional benefits assessment. Food and Chemical Toxicology, 2019, 123, 113-124.	1.8	38
11	Metals and elements in sardine and anchovy: Species specific differences and correlations with proximate composition and size. Science of the Total Environment, 2018, 645, 329-338.	3.9	26
12	Low-dose addition of silver nanoparticles stresses marine plankton communities. Environmental Science: Nano, 2018, 5, 1965-1980.	2.2	16
13	The impact of silver nanoparticles on marine plankton dynamics: Dependence on coating, size and concentration. Science of the Total Environment, 2017, 601-602, 1838-1848.	3.9	24
14	Silver nanoparticles in seawater: A dynamic mass balance at part per trillion silver concentrations. Science of the Total Environment, 2017, 601-602, 15-21.	3.9	32
15	Arsenic speciation in fish from Greek coastal areas. Journal of Environmental Sciences, 2017, 56, 300-312.	3.2	46
16	Assessment of the use of copper alloy aquaculture nets: Potential impacts on the marine environment and on the farmed fish. Aquaculture, 2016, 465, 209-222.	1.7	33
17	Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chemistry, 2016, 194, 659-670.	4.2	84
18	Environmental variability and heavy metal concentrations from five lagoons in the Ionian Sea (Amvrakikos Gulf, W Greece). Biodiversity Data Journal, 2016, 4, e8233.	0.4	6

IOANNA KALANTZI

#	Article	IF	CITATIONS
19	Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms. Science of the Total Environment, 2013, 444, 128-137.	3.9	108
20	Adaptation of fish farming production to the environmental characteristics of the receiving marine ecosystems: A proxy to carrying capacity. Aquaculture, 2013, 408-409, 184-190.	1.7	16
21	Metals and other elements in tissues of wild fish from fish farms and comparison with farmed species in sites with oxic and anoxic sediments. Food Chemistry, 2013, 141, 680-694.	4.2	61
22	The role of the seagrass <i>Posidonia oceanica</i> in the cycling of trace elements. Biogeosciences, 2012, 9, 2497-2507.	1.3	39
23	Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean Sea. Marine Environmental Research, 2010, 69, 326-336.	1.1	68
24	Benthic impacts of fish farming: Meta-analysis of community and geochemical data. Marine Pollution Bulletin, 2006, 52, 484-493.	2.3	196