
Joseph M Orr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5525069/publications.pdf Version: 2024-02-01

Ιωςέρη Μ Ορρ

#	Article	IF	CITATIONS
1	The Organization of Right Prefrontal Networks Reveals Common Mechanisms of Inhibitory Regulation Across Cognitive, Emotional, and Motor Processes. Cerebral Cortex, 2016, 26, 1634-1646.	1.6	117
2	Orbitofrontal cortex volume and brain reward response in obesity. International Journal of Obesity, 2015, 39, 214-221.	1.6	112
3	Neurological Soft Signs Predict Abnormal Cerebellar-Thalamic Tract Development and Negative Symptoms in Adolescents at High Risk for Psychosis: A Longitudinal Perspective. Schizophrenia Bulletin, 2014, 40, 1204-1215.	2.3	110
4	Cerebellar networks in individuals at ultra highâ€risk of psychosis: Impact on postural sway and symptom severity. Human Brain Mapping, 2014, 35, 4064-4078.	1.9	104
5	Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage: Clinical, 2017, 14, 622-628.	1.4	101
6	Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia, 2018, 117, 156-166.	0.7	97
7	Sleep dysfunction and thalamic abnormalities in adolescents at ultra high-risk for psychosis. Schizophrenia Research, 2013, 151, 148-153.	1.1	83
8	The Error-Related Negativity (ERN/Ne). , 2011, , .		82
9	Anterior Cingulate Cortex Makes 2 Contributions to Minimizing Distraction. Cerebral Cortex, 2009, 19, 703-711.	1.6	69
10	Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Structure and Function, 2015, 220, 1291-1306.	1.2	67
11	Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry. NeuroImage: Clinical, 2016, 12, 47-56.	1.4	61
12	Widespread brain dysconnectivity associated with psychotic-like experiences in the general population. Neurolmage: Clinical, 2014, 4, 343-351.	1.4	57
13	Organization of the Human Frontal Pole Revealed by Large-Scale DTI-Based Connectivity: Implications for Control of Behavior. PLoS ONE, 2015, 10, e0124797.	1.1	57
14	Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging. NeuroImage, 2016, 124, 591-601.	2.1	55
15	Physical activity level and medial temporal health in youth at ultra high-risk for psychosis Journal of Abnormal Psychology, 2013, 122, 1101-1110.	2.0	53
16	Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophrenia Research, 2015, 162, 86-89.	1.1	49
17	Cerebellar Morphology and Procedural Learning Impairment in Neuroleptic-Naive Youth at Ultrahigh Risk of Psychosis. Clinical Psychological Science, 2014, 2, 152-164.	2.4	44
18	Hippocampal Shape Abnormalities Predict Symptom Progression in Neuroleptic-Free Youth at Ultrahigh Risk for Psychosis. Schizophrenia Bulletin, 2015, 42, sbv086.	2.3	42

Joseph M Orr

#	Article	IF	CITATIONS
19	The neural mechanisms underlying internally and externally guided task selection. NeuroImage, 2014, 84, 191-205.	2.1	39
20	The Role of the Error Positivity in the Conscious Perception of Errors. Journal of Neuroscience, 2011, 31, 5891-5892.	1.7	29
21	Striatal abnormalities and spontaneous dyskinesias in non-clinical psychosis. Schizophrenia Research, 2013, 151, 141-147.	1.1	29
22	Abnormal hippocampal–thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis. NPJ Schizophrenia, 2015, 1, .	2.0	29
23	Age Differences in the Subcomponents of Executive Functioning. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2020, 75, e31-e55.	2.4	27
24	Distinct and opposite profiles of connectivity during selfâ€reference task and rest in youth at clinical high risk for psychosis. Human Brain Mapping, 2019, 40, 3254-3264.	1.9	25
25	The influence of response conflict on voluntary task switching: a novel test of the conflict monitoring model. Psychological Research, 2012, 76, 60-73.	1.0	21
26	Generalized signaling for control: Evidence from postconflict and posterror performance adjustments Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1161-1177.	0.7	20
27	Succumbing to Bottom-Up Biases on Task Choice Predicts Increased Switch Costs in the Voluntary Task Switching Paradigm. Frontiers in Psychology, 2011, 2, 31.	1.1	20
28	Hypothalamic–pituitary–adrenal axis dysfunction in non-clinical psychosis. Psychiatry Research, 2013, 206, 315-317.	1.7	19
29	Motor behavior reflects reduced hemispheric asymmetry in the psychosis risk period. Schizophrenia Research, 2016, 170, 137-142.	1.1	19
30	The cerebellum and learning of non-motor associations in individuals at clinical-high risk for psychosis. NeuroImage: Clinical, 2018, 19, 137-146.	1.4	18
31	Emotion recognition and social/role dysfunction in non-clinical psychosis. Schizophrenia Research, 2013, 143, 70-73.	1.1	17
32	Orbitofrontal cortex volume and intrinsic religiosity in non-clinical psychosis. Psychiatry Research - Neuroimaging, 2014, 222, 124-130.	0.9	11
33	Toward a More Sophisticated Response Representation in Theories of Medial Frontal Performance Monitoring: The Effects of Motor Similarity and Motor Asymmetries. Cerebral Cortex, 2014, 24, 414-425.	1.6	9
34	Cortical Morphometry in the Psychosis Risk Period: A Comprehensive Perspective of Surface Features. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 434-443.	1.1	9
35	Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia, 2020, 148, 107620.	0.7	9
36	Longitudinal Assessment and Functional Neuroimaging of Movement Variability Reveal Novel Insights Into Motor Dysfunction in Clinical High Risk for Psychosis. Schizophrenia Bulletin, 2020, 46, 1567-1576.	2.3	9

Joseph M Orr

#	Article	IF	CITATIONS
37	Component processes underlying voluntary task selection: Separable contributions of task-set inertia and reconfiguration. Cognition, 2021, 212, 104685.	1.1	8
38	Social reward processing: A biomarker for predicting psychosis risk?. Schizophrenia Research, 2020, 226, 129-137.	1.1	6
39	High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data. Journal of Computational Science, 2018, 26, 157-164.	1.5	5
40	Preliminary effects of prefrontal tDCS on dopamine-mediated behavior and psychophysiology. Behavioural Brain Research, 2021, 402, 113091.	1.2	5
41	Implementation of High-Performance Correlation and Mapping Engine for Rapid Generation of Brain Connectivity Networks from Big fMRI Data. , 2018, 2018, 1032-1036.		4
42	Striatal-frontal network activation during voluntary task selection under conditions of monetary reward. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 568-585.	1.0	4
43	Creativity on demand – Hacking into creative problem solving. NeuroImage, 2020, 216, 116867.	2.1	3
44	Adolescents at clinical high risk for psychosis show qualitatively altered patterns of activation during rule learning. NeuroImage: Clinical, 2020, 27, 102286.	1.4	1
45	Effects of media multitasking frequency on a novel volitional multitasking paradigm. PeerJ, 2022, 10, e12603.	0.9	1