Chunhui Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5525027/publications.pdf Version: 2024-02-01

Снимнии Мі

#	ARTICLE	IF	CITATIONS
1	The Anti-fibrotic Effects and Mechanisms of MicroRNA-486-5p in Pulmonary Fibrosis. Scientific Reports, 2015, 5, 14131.	1.6	89
2	miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by IncRNA CHRF. Scientific Reports, 2016, 6, 30921.	1.6	89
3	MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by IncRNA MALAT1. Scientific Reports, 2017, 7, 11313.	1.6	85
4	The CDR1as/miR-7/TGFBR2 Axis Modulates EMT in Silica-Induced Pulmonary Fibrosis. Toxicological Sciences, 2018, 166, 465-478.	1.4	85
5	Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 420-431.	1.8	78
6	MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2. Journal of Molecular Medicine, 2016, 94, 1267-1279.	1.7	74
7	Meta-analysis on the effectiveness of team-based learning on medical education in China. BMC Medical Education, 2018, 18, 77.	1.0	63
8	MiR-326 Inhibits Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis through Targeting TNFSF14 and PTBP1. Chemical Research in Toxicology, 2019, 32, 2192-2203.	1.7	52
9	Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. Journal of Translational Medicine, 2021, 19, 349.	1.8	52
10	Common genetic variants in pre-microRNAs are associated with risk of coal workers' pneumoconiosis. Journal of Human Genetics, 2010, 55, 13-17.	1.1	40
11	Prevalence Characteristics of Coal Workers' Pneumoconiosis (CWP) in a State-Owned Mine in Eastern China. International Journal of Environmental Research and Public Health, 2015, 12, 7856-7867.	1.2	36
12	Survival Analysis of Coal Workers' Pneumoconiosis (CWP) Patients in a State-Owned Mine in the East of China from 1963 to 2014. International Journal of Environmental Research and Public Health, 2017, 14, 489.	1.2	34
13	CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. International Journal of Biological Sciences, 2021, 17, 2294-2307.	2.6	34
14	Associations of IL-4, IL-4R, and IL-13 Gene Polymorphisms in Coal Workers' Pneumoconiosis in China: A Case-Control Study. PLoS ONE, 2011, 6, e22624.	1.1	33
15	Polymorphisms in Inflammasome Genes and Risk of Coal Workers' Pneumoconiosis in a Chinese Population. PLoS ONE, 2012, 7, e47949.	1.1	32
16	miR-542-5p Attenuates Fibroblast Activation by Targeting Integrin α6 in Silica-Induced Pulmonary Fibrosis. International Journal of Molecular Sciences, 2018, 19, 3717.	1.8	31
17	ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cellular and Molecular Biology Letters, 2022, 27, 26.	2.7	29
18	Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms. Laboratory Investigation, 2016, 96, 1279-1300.	1.7	26

Снимниі Ni

#	Article	IF	CITATIONS
19	Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology, 2019, 414, 57-67.	2.0	26
20	Assessing the Effectiveness of Problem-Based Learning of Preventive Medicine Education in China. Scientific Reports, 2014, 4, 5126.	1.6	25
21	LncRNAâ€ATB regulates epithelialâ€mesenchymal transition progression in pulmonary fibrosis via sponging miRâ€29bâ€2â€5p and miRâ€34câ€3p. Journal of Cellular and Molecular Medicine, 2021, 25, 7294-730	6 ^{1.6}	25
22	A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Human Molecular Genetics, 2014, 23, 6385-6394.	1.4	24
23	miR-1224-5p Mediates Mitochondrial Damage to Affect Silica-Induced Pulmonary Fibrosis by Targeting BECN1. International Journal of Molecular Sciences, 2017, 18, 2357.	1.8	24
24	Occupational Respiratory Diseases of Miners from Two Gold Mines in Ghana. International Journal of Environmental Research and Public Health, 2017, 14, 337.	1.2	22
25	Characteristics and Trends of Pneumoconiosis in the Jiangsu Province, China, 2006–2017. International Journal of Environmental Research and Public Health, 2019, 16, 437.	1.2	20
26	Genome-wide analysis of aberrantly expressed circulating miRNAs in patients with coal workers' pneumoconiosis. Molecular Biology Reports, 2013, 40, 3739-3747.	1.0	17
27	MUC5B promoter polymorphisms and risk of coal workers' pneumoconiosis in a Chinese population. Molecular Biology Reports, 2014, 41, 4171-4176.	1.0	17
28	LncRNA-PVT1 activates lung fibroblasts via miR-497-5p and is facilitated by FOXM1. Ecotoxicology and Environmental Safety, 2021, 213, 112030.	2.9	16
29	Polymorphisms in interleukin 17A gene and coal workers' pneumoconiosis risk in a Chinese population. BMC Pulmonary Medicine, 2015, 15, 79.	0.8	15
30	Polymorphisms in autophagy related genes and the coal workers' pneumoconiosis in a Chinese population. Gene, 2017, 632, 36-42.	1.0	14
31	Association Analysis Identifies New Risk Loci for Coal Workers' Pneumoconiosis in Han Chinese Men. Toxicological Sciences, 2018, 163, 206-213.	1.4	14
32	Quality of life and influencing factors of coal miners in Xuzhou, China. Journal of Thoracic Disease, 2018, 10, 835-844.	0.6	14
33	A Six-Nucleotide Insertion-Deletion Polymorphism in theCASP8Promoter is Associated with Risk of Coal Workers' Pneumoconiosis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 712-716.	1.1	13
34	Long noncoding RNA-SNHG20 promotes silica-induced pulmonary fibrosis by miR-490-3p/TGFBR1 axis. Toxicology, 2021, 451, 152683.	2.0	13
35	miR-770–5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. Ecotoxicology and Environmental Safety, 2021, 220, 112372.	2.9	13
36	Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers' Pneumoconiosis in Chinese Han Population. International Journal of Environmental Research and Public Health, 2015, 12, 13901-13912.	1.2	12

Снимниі Ni

#	Article	IF	CITATIONS
37	Exploration study on serum metabolic profiles of Chinese male patients with artificial stone silicosis, silicosis, and coal worker's pneumoconiosis. Toxicology Letters, 2022, 356, 132-142.	0.4	12
38	Polymorphisms in Long Noncoding RNA H19 Contribute to the Protective Effects of Coal Workers' Pneumoconiosis in a Chinese Population. International Journal of Environmental Research and Public Health, 2016, 13, 903.	1.2	10
39	M10 peptide attenuates silica-induced pulmonary fibrosis by inhibiting Smad2 phosphorylation. Toxicology and Applied Pharmacology, 2019, 376, 46-57.	1.3	9
40	Pathway analysis for a genome-wide association study of pneumoconiosis. Toxicology Letters, 2015, 232, 284-292.	0.4	8
41	Respiratory traits and coal workers' pneumoconiosis: Mendelian randomisation and association analysis. Occupational and Environmental Medicine, 2021, 78, 137-141.	1.3	7
42	Association of transforming growth factor-β1 gene variants with risk of coal workers' pneumoconiosis. Journal of Biomedical Research, 2010, 24, 270-276.	0.7	6
43	GITR promoter polymorphism contributes to risk of coal workers' pneumoconiosis: A case–control study from China. Immunology Letters, 2014, 162, 210-216.	1.1	6
44	Associations of MMP-7 and OPN gene polymorphisms with risk of coal workers' pneumoconiosis in a Chinese population: a case-control study. Inhalation Toxicology, 2015, 27, 641-648.	0.8	6
45	LRBA Gene Polymorphisms and Risk of Coal Workers' Pneumoconiosis: A Case–Control Study from China. International Journal of Environmental Research and Public Health, 2017, 14, 1138.	1.2	6
46	Polymorphisms in SELE Gene and Risk of Coal Workers' Pneumoconiosis in Chinese: A Case-Control Study. PLoS ONE, 2013, 8, e73254.	1.1	5
47	Polymorphisms in SPARC and Coal Workers' Pneumoconiosis Risk in a Chinese Population. PLoS ONE, 2014, 9, e105226.	1.1	5
48	The association of <i>LAMB1</i> polymorphism and expression changes with the risk of coal workers' pneumoconiosis. Environmental Toxicology, 2017, 32, 2182-2190.	2.1	4
49	PTX3 alleviates hard metal-induced acute lung injury through potentiating efferocytosis. Ecotoxicology and Environmental Safety, 2022, 230, 113139.	2.9	3
50	Transcriptomeâ€wide association study identifies <scp> <i>PSMB9</i> </scp> as a susceptibility gene for coal workers' pneumoconiosis. Environmental Toxicology, 2022, , .	2.1	1