
Bjoern Braunschweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Spectroscopic Examination of a Low Overpotential Pathway for Carbon Dioxide Conversion to Carbon Monoxide. Journal of Physical Chemistry C, 2012, 116, 15307-15312.	1.5	230
2	pH Effects on the Molecular Structure of β-Lactoglobulin Modified Air–Water Interfaces and Its Impact on Foam Rheology. Langmuir, 2013, 29, 11646-11655.	1.6	136
3	Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. Journal of Catalysis, 2011, 278, 181-188.	3.1	132
4	Electrocatalysis: A direct alcohol fuel cell and surface science perspective. Catalysis Today, 2013, 202, 197-209.	2.2	130
5	Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Applied Physics B: Lasers and Optics, 2008, 92, 327-333.	1.1	77
6	Protein Adsorption at the Electrified Air–Water Interface: Implications on Foam Stability. Langmuir, 2012, 28, 7780-7787.	1.6	65
7	Impact of Oxygen Plasma Treatment on the Device Performance of Zinc Oxide Nanoparticle-Based Thin-Film Transistors. ACS Applied Materials & Interfaces, 2012, 4, 1693-1696.	4.0	64
8	Molecular Structure of a Mineral/Water Interface:  Effects of Surface NanoRoughness of α-Al ₂ O ₃ (0001). Journal of Physical Chemistry C, 2008, 112, 1751-1754.	1.5	61
9	Superstructures and Orderâ~Disorder Transition of Sulfate Adlayers on Pt(111) in Sulfuric Acid Solution. Langmuir, 2009, 25, 11112-11120.	1.6	61
10	Tuning the Molecular Order of C ₆₀ Functionalized Phosphonic Acid Monolayers. Langmuir, 2011, 27, 15016-15023.	1.6	55
11	Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 1673-1682.	1.5	55
12	Vibrational sum-frequency generation at protein modified air–water interfaces: Effects of molecular structure and surface charging. Current Opinion in Colloid and Interface Science, 2014, 19, 207-215.	3.4	54
13	Smart Air–Water Interfaces with Arylazopyrazole Surfactants and Their Role in Photoresponsive Aqueous Foam. Langmuir, 2018, 34, 6028-6035.	1.6	52
14	Hydroxypropyl cellulose as a green polymer for thermo-responsive aqueous foams. Soft Matter, 2019, 15, 2876-2883.	1.2	52
15	Real-Time Investigations of Pt(111) Surface Transformations in Sulfuric Acid Solutions. Journal of the American Chemical Society, 2010, 132, 14036-14038.	6.6	51
16	Study of Ethanol Electrooxidation in Alkaline Electrolytes with Isotope Labels and Sum-Frequency Generation. Journal of Physical Chemistry Letters, 2011, 2, 2236-2240.	2.1	51
17	Quantifying Double-Layer Potentials at Liquid–Gas Interfaces from Vibrational Sum-Frequency Generation. Journal of Physical Chemistry C, 2019, 123, 1279-1286.	1.5	46
18	Mechanistic Insights on CO ₂ Reduction Reactions at Platinum/[BMIM][BF ₄] Interfaces from In Operando Spectroscopy. ACS Catalysis, 2019, 9, 6284-6292.	5.5	43

#	Article	IF	CITATIONS
19	Shedding Light on the Growth of Gold Nanoshells. ACS Nano, 2014, 8, 3088-3096.	7.3	42
20	Functionalization of steel surfaces with organic acids: Influence on wetting and corrosion behavior. Applied Surface Science, 2017, 404, 326-333.	3.1	42
21	Indentation and Self-Healing Mechanisms of a Self-Assembled Monolayer—A Combined Experimental and Modeling Study. Journal of the American Chemical Society, 2014, 136, 10718-10727.	6.6	37
22	Structure of Polystyrenesulfonate/Surfactant Mixtures at Air–Water Interfaces and Their Role as Building Blocks for Macroscopic Foam. Langmuir, 2017, 33, 3499-3508.	1.6	37
23	Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces. Journal of Electroanalytical Chemistry, 2017, 800, 144-150.	1.9	36
24	Spiropyran Sulfonates for Photo- and pH-Responsive Air–Water Interfaces and Aqueous Foam. Langmuir, 2020, 36, 6871-6879.	1.6	36
25	Sum-frequency generation of acetate adsorption on Au and Pt surfaces: Molecular structure effects. Journal of Chemical Physics, 2010, 133, 234702.	1.2	35
26	The microelectronic wireless nitrate sensor network for environmental water monitoring. Journal of Environmental Monitoring, 2012, 14, 3068.	2.1	34
27	Carboxylate Ion Pairing with Alkali-Metal Ions for β-Lactoglobulin and Its Role on Aggregation and Interfacial Adsorption. Journal of Physical Chemistry B, 2015, 119, 5505-5517.	1.2	32
28	Specific effects of Ca ²⁺ ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability. Soft Matter, 2016, 12, 5995-6004.	1.2	30
29	Surface Charging and Interfacial Water Structure of Amphoteric Colloidal Particles. Journal of Physical Chemistry C, 2014, 118, 10033-10042.	1.5	29
30	Aqueous Mixtures of Room-Temperature Ionic Liquids: Entropy-Driven Accumulation of Water Molecules at Interfaces. Journal of Physical Chemistry C, 2019, 123, 13795-13803.	1.5	29
31	lon Pairing and Adsorption of Azo Dye/C ₁₆ TAB Surfactants at the Air–Water Interface. Journal of Physical Chemistry C, 2017, 121, 27992-28000.	1.5	27
32	Mixed Layers of β-Lactoglobulin and SDS at Air–Water Interfaces with Tunable Intermolecular Interactions. Journal of Physical Chemistry B, 2014, 118, 4098-4105.	1.2	26
33	The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Advances in Colloid and Interface Science, 2018, 251, 1-25.	7.0	25
34	Nonlinear Optical Spectroscopy of Suboxides at Oxidized Si(111) Interfaces. Physical Review Letters, 2004, 93, 097402.	2.9	24
35	Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chemical Science, 2020, 11, 2085-2092.	3.7	23
36	Specific Ion Effects of Dodecyl Sulfate Surfactants with Alkali Ions at the Air–Water Interface. Molecules, 2019, 24, 2911.	1.7	22

#	Article	IF	CITATIONS
37	Potential-Induced Adsorption and Structuring of Water at the Pt(111) Electrode Surface in Contact with an Ionic Liquid. Journal of Physical Chemistry Letters, 2020, 11, 7116-7121.	2.1	20
38	Cations of Ionic Liquid Electrolytes Can Act as a Promoter for CO ₂ Electrocatalysis through Reactive Intermediates and Electrostatic Stabilization. Journal of Physical Chemistry C, 2021, 125, 16498-16507.	1.5	20
39	Lubrication of Individual Microcontacts by a Self-Assembled Alkyl Phosphonic Acid Monolayer on α-Al ₂ O ₃ (0001). Langmuir, 2016, 32, 8298-8306.	1.6	17
40	Effects of Ca ²⁺ Ion Condensation on the Molecular Structure of Polystyrene Sulfonate at Air–Water Interfaces. Langmuir, 2018, 34, 11714-11722.	1.6	17
41	Specific Ion Effects of Trivalent Cations on the Structure and Charging State of β-Lactoglobulin Adsorption Layers. Langmuir, 2019, 35, 11299-11307.	1.6	17
42	Photo-Switchable Surfactants for Responsive Air–Water Interfaces: Azo versus Arylazopyrazole Amphiphiles. Journal of Physical Chemistry B, 2020, 124, 6913-6923.	1.2	17
43	Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir–Blodgett Transfer. Langmuir, 2015, 31, 4678-4685.	1.6	16
44	Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface. International Journal of Pharmaceutics, 2018, 541, 234-245.	2.6	16
45	Charge-Controlled Surface Properties of Native and Fluorophore-Labeled Bovine Serum Albumin at the Air–Water Interface. Journal of Physical Chemistry B, 2018, 122, 10377-10383.	1.2	16
46	Pt(111) thin-layer electrodes on α-Al2O3(0001): Morphology and atomic structure. Surface Science, 2011, 605, 1082-1089.	0.8	15
47	Atomic transport in metastable compounds: Case study of self-diffusion in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:mtext>Si < / mml:mtext> < mml:mo> â^² < / mml:mo> < mml:mtext>C < / mml:mtext using neutron reflectometry. Physical Review B, 2009, 80, .	> < <mark>1.1</mark> > <mml:mc< td=""><td>o>a¹⁴</td></mml:mc<>	o>a ¹⁴
48	Role of Citrate and NaBr at the Surface of Colloidal Gold Nanoparticles during Functionalization. Journal of Physical Chemistry C, 2018, 122, 27383-27391.	1.5	14
49	C _n TAB/polystyrene sulfonate mixtures at air–water interfaces: effects of alkyl chain length on surface activity and charging state. Physical Chemistry Chemical Physics, 2019, 21, 7847-7856.	1.3	14
50	Role of H 2 O for CO 2 Reduction Reactions at Platinum/Electrolyte Interfaces in Imidazolium Roomâ€Temperature Ionic Liquids. ChemElectroChem, 2020, 7, 1765-1774.	1.7	14
51	Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide. Nanoscale, 2017, 9, 6291-6295.	2.8	13
52	In situspectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles. Journal of Physics Condensed Matter, 2017, 29, 133002.	0.7	12
53	Molecular structure of octadecylphosphonic acids during their self-assembly on α-Al ₂ O ₃ (0001). Physical Chemistry Chemical Physics, 2018, 20, 19382-19389.	1.3	12
54	pH effects on the molecular structure and charging state of β-Escin biosurfactants at the air-water interface. Journal of Colloid and Interface Science, 2022, 607, 1754-1761.	5.0	12

#	Article	IF	CITATIONS
55	Dynamic Wetting of Photoresponsive Arylazopyrazole Monolayers is Controlled by the Molecular Kinetics of the Monolayer. Journal of the American Chemical Society, 2022, 144, 4026-4038.	6.6	12
56	Memory effects in polymer brushes showing co-nonsolvency effects. Advances in Colloid and Interface Science, 2021, 294, 102442.	7.0	11
57	Structure-property relations of β-lactoglobulin/l̂º-carrageenan mixtures in aqueous foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128267.	2.3	10
58	A cyclodextrin surfactant for stable emulsions with an accessible cavity for host–guest complexation. Chemical Communications, 2020, 56, 15434-15437.	2.2	9
59	Surface spectroscopy of Pt(1 1 1) single-crystal electrolyte interfaces with broadband sum-frequency generation. Journal of Electroanalytical Chemistry, 2014, 716, 136-144.	1.9	8
60	Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions. Langmuir, 2016, 32, 1440-1449.	1.6	8
61	β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 4. Impact on the Stability of Foam Films and Foams. Minerals (Basel, Switzerland), 2020, 10, 636.	0.8	7
62	Nanoscale Effects on the Surfactant Adsorption and Interface Charging in Hexadecane/Water Emulsions. ACS Nano, 2021, 15, 20136-20147.	7.3	7
63	Light-induced switching of polymer-surfactant interactions enables controlled polymer thermoresponsive behaviour. Chemical Communications, 2021, 57, 5826-5829.	2.2	6
64	Role of imidazolium cations on the interfacial structure of roomâ€ŧemperature ionic liquids in contact with Pt(111) electrodes. Electrochemical Science Advances, 2023, 3, .	1.2	6
65	Responsive Material and Interfacial Properties through Remote Control of Polyelectrolyte–Surfactant Mixtures. ACS Applied Materials & Interfaces, 2022, 14, 4656-4667.	4.0	5
66	On the complex role of ammonia in the electroless deposition of curved silver patches on silica nanospheres. CrystEngComm, 2018, 20, 6214-6224.	1.3	4
67	Adsorption of CTAB on Sapphire- <i>c</i> at High pH: Surface and Zeta Potential Measurements Combined with Sum-Frequency and Second-Harmonic Generation. Langmuir, 2022, 38, 3380-3391.	1.6	4
68	One-dimensional defects in iodine adlayers on Pt(100). Surface Science, 2009, 603, 3361-3366.	0.8	1
69	Molekulares Verstädnis fluider Grenzflähen am Beispiel von Proteinschämen. Chemie-Ingenieur-Technik, 2016, 88, 1298-1298.	0.4	0