List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524861/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 500â€W rod-type 4 × 4 multicore ultrafast fiber laser. Optics Letters, 2022, 47, 345.                                                          | 3.3  | 15        |
| 2  | High-energy Q-switched 16-core tapered rod-type fiber laser system. Optics Letters, 2022, 47, 1725.                                            | 3.3  | 10        |
| 3  | Characterization of transverse mode instability in fiber-laser systems using a position-sensitive detector. , 2021, , .                        |      | 1         |
| 4  | Mitigation of transverse mode instability through a dynamic modification of the inversion in high-power fiber amplifiers. , 2021, , .          |      | 0         |
| 5  | Optimizing the design of coherently combined multicore fiber amplifiers. , 2021, , .                                                           |      | 0         |
| 6  | Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber<br>amplifier. Optics Express, 2021, 29, 16175. | 3.4  | 13        |
| 7  | Transverse mode instability and thermal effects in thulium-doped fiber amplifiers under high thermal loads. Optics Express, 2021, 29, 14963.   | 3.4  | 13        |
| 8  | Control and stabilization of the modal content of fiber amplifiers using traveling waves. Optics Express, 2021, 29, 34452.                     | 3.4  | 1         |
| 9  | Gas-plasma-based generation of broadband terahertz radiation with 640  mW average power. Optics<br>Letters, 2021, 46, 5256.                    | 3.3  | 35        |
| 10 | Fiber laser-driven gas plasma-based generation of THz radiation with 50-mW average power. Applied Physics B: Lasers and Optics, 2020, 126, 2.  | 2.2  | 27        |
| 11 | Transverse mode instability. Advances in Optics and Photonics, 2020, 12, 429.                                                                  | 25.5 | 174       |
| 12 | The sensitivity of the mode instability threshold to different types of intensity noise. , 2020, , .                                           |      | 1         |
| 13 | Simplified design of optical elements for filled-aperture coherent beam combination. Optics Express, 2020, 28, 21035.                          | 3.4  | 8         |
| 14 | Impact of thermo-optical effects in coherently combined multicore fiber amplifiers. Optics Express, 2020, 28, 38093.                           | 3.4  | 17        |
| 15 | Talbot fiber: a poorman's approach to coherent combining. , 2020, , .                                                                          |      | 0         |
| 16 | Investigation of the thermo-optical behavior of multicore fibers used in coherently combined fiber laser systems. , 2020, , .                  |      | 2         |
| 17 | Mitigation of transverse mode instability with travelling waves in high-power fiber amplifiers. , 2020, ,                                      |      | 0         |
| 18 | 108 W average power ultrashort pulses with GW-level peak power from a Tm-doped fiber CPA system. ,                                             |      | 0         |

2020,,.

| #  | Article                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Watt-class optical parametric amplification driven by a thulium-doped fiber laser in the molecular fingerprint region. , 2020, , .            |      | 1         |
| 20 | Pump-Power-Noise Influence on Mode Instabilities in High-Power Fiber Laser Systems. , 2019, , .                                               |      | 1         |
| 21 | The Impact of Fiber Core Design and Thermally-Induced Phase Shifts on the Threshold of Mode<br>Instabilities. , 2019, , .                     |      | 0         |
| 22 | Ultrafast Tm-Doped Fiber Amplifier with 1 kW Average Output Power. , 2019, , .                                                                |      | 3         |
| 23 | High Performance Ultrafast Thulium-Doped Fiber Lasers. , 2019, , .                                                                            |      | 0         |
| 24 | 50mW Average Power Gas-Plasma THz Generation Driven by a Fiber Laser. , 2019, , .                                                             |      | 0         |
| 25 | Average-Power Scaling of Broadband THz radiation to 50 mW. , 2019, , .                                                                        |      | 0         |
| 26 | Relative amplitude noise transfer function of an Yb <sup>3+</sup> -doped fiber amplifier chain. Optics<br>Express, 2019, 27, 17041.           | 3.4  | 13        |
| 27 | Transverse single-mode operation in a passive large pitch fiber with more than 200  μm mode-field<br>diameter. Optics Letters, 2019, 44, 650. | 3.3  | 23        |
| 28 | The impact of pump-power noise on transverse mode instabilities. , 2019, , .                                                                  |      | 5         |
| 29 | Single-mode propagation with 205 $\hat{A}\mu$ m mode-field diameter in a passive large pitch fiber. , 2019, , .                               |      | 1         |
| 30 | Fiber-laser driven THz source based on air-plasma. , 2019, , .                                                                                |      | 0         |
| 31 | Tm:fiber CPA driven nonlinear pulse compression stage delivering multi-GW, sub-10 fs pulses at 20 W of average power. , 2019, , .             |      | 2         |
| 32 | Origin and evolution of phase-shifts in high-power fiber laser systems: detailed insights into TMI. , 2019, , .                               |      | 5         |
| 33 | Observation of transverse-mode instabilities in a thulium-doped fiber amplifier. , 2019, , .                                                  |      | 2         |
| 34 | Coherent Beam Combination of Ultrafast Fiber Lasers. IEEE Journal of Selected Topics in Quantum<br>Electronics, 2018, 24, 1-9.                | 2.9  | 56        |
| 35 | Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers. Light: Science and Applications, 2018, 7, 59.        | 16.6 | 46        |
| 36 | Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light: Science and Applications, 2018, 7, 94.                | 16.6 | 101       |

| Thermal analysis of Yb-doped high-power fiber amplifiers with Al:P co-doped cores. Optics Express,<br>2018, 26, 7614.                                                                                     | 11<br>42 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                           | 42       |
| <ul> <li>Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode</li> <li>instability threshold. Optics Express, 2018, 26, 10691.</li> </ul>                          |          |
| <ul> <li>Phase-shift evolution of the thermally-induced refractive index grating in high-power fiber laser</li> <li>systems induced by pump-power variations. Optics Express, 2018, 26, 19489.</li> </ul> | 24       |
| 40 Towards the control of the modal energy transfer in transverse mode instabilities. , 2018, , .                                                                                                         | 3        |
| Ultrafast thulium fiber laser system emitting more than 1  kW of average power. Optics Letters, 2018, 43,<br>5853.                                                                                        | 107      |
| 42 Ultra-large mode area fibers for high power lasers. , 2018, , .                                                                                                                                        | 4        |
| <ul> <li>Nonlinear pulse compression stage delivering 43-W few-cycle pulses with GW peak-power at 2-µm</li> <li>wavelength. , 2018, , .</li> </ul>                                                        | 0        |
| 44 Transverse mode instabilities in burst operation of high-power fiber laser systems. , 2018, , .                                                                                                        | 7        |
| Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system. , 2017, , .                                                                                                    | 1        |
| 46 All-fiber optical parametric oscillator for bio-medical imaging applications. , 2017, , .                                                                                                              | 3        |
| 47 Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier 0.8 by active modulation of the pump power. Proceedings of SPIE, 2017, , .                        | 1        |
| 48 Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber 0.8 amplifier. Proceedings of SPIE, 2017, , .                                                     | 9        |
| High-average power 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage. , 2017, , .                                                                | 0        |
| 50 Optimizing the noise characteristics of high-power fiber laser systems. , 2017, , .                                                                                                                    | 3        |
| The impact of core co-dopants on the mode instability threshold of high-power fiber laser systems.<br>Proceedings of SPIE, 2017, , .                                                                      | 1        |
| 52 Self-protecting nonlinear compression in a solid fiber for long-term stable ultrafast lasers at 2 μm 0.8 wavelength. Proceedings of SPIE, 2017, , .                                                    | 0        |
| Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier. Optics Express, 2017, 25,<br>14892.                                                                                          | 167      |

Nonlinear pulse compression to 43  W GW-class few-cycle pulses at 2  μm wavelength. Optics Letters, 2017, 42, 4179.

| #  | Article                                                                                                                                                               | IF        | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| 55 | High average power nonlinear compression to 4  GW, sub-50  fs pulses at 2  μm wa<br>2017, 42, 747.                                                                    | avelength | . Optics Letter    |
| 56 | Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities. Optics Express, 2016, 24, 7879.                              | 3.4       | 57                 |
| 57 | Optimizing large-pitch fibers for higher average powers. Proceedings of SPIE, 2016, , .                                                                               | 0.8       | 2                  |
| 58 | Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Optics Letters, 2016, 41, 4130.                                                       | 3.3       | 60                 |
| 59 | Thermal optimization of high power fiber laser systems. , 2016, , .                                                                                                   |           | Ο                  |
| 60 | Average power limit of fiber-laser systems with nearly diffraction-limited beam quality. Proceedings of SPIE, 2016, , .                                               | 0.8       | 17                 |
| 61 | Optimizing the mode instability threshold of high-power fiber laser systems. Proceedings of SPIE, 2016, , .                                                           | 0.8       | Ο                  |
| 62 | Four-wave mixing based light sources for real-world biomedical applications of coherent Raman microscopy. Proceedings of SPIE, 2016, , .                              | 0.8       | 2                  |
| 63 | Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system. Proceedings of SPIE, 2016, , . | 0.8       | О                  |
| 64 | Fiberâ€based light sources for biomedical applications of coherent anti‣tokes Raman scattering<br>microscopy. Laser and Photonics Reviews, 2015, 9, 435-451.          | 8.7       | 61                 |
| 65 | Wavelength dependence of maximal diffraction-limited output power of fiber lasers. Proceedings of SPIE, 2015, , .                                                     | 0.8       | 2                  |
| 66 | Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome<br>photonic crystal fiber. Optics Letters, 2015, 40, 2770.             | 3.3       | 41                 |
| 67 | Self-efficiency improvement and cooling in thulium-doped fibers. Proceedings of SPIE, 2015, , .                                                                       | 0.8       | О                  |
| 68 | Self-compression in a solid fiber to 24  MW peak power with few-cycle pulses at 2  μm wave<br>Letters, 2015, 40, 5160.                                                | length. O | pticg <sub>5</sub> |
| 69 | Tm-based fiber-laser system with more than 200  MW peak power. Optics Letters, 2015, 40, 9.                                                                           | 3.3       | 66                 |
| 70 | Sub-700fs pulses at 152 W average power from a Tm-doped fiber CPA system. Proceedings of SPIE, 2015, , .                                                              | 0.8       | 1                  |
| 71 | Peak power scaling of thulium-doped ultrafast fiber laser systems. , 2015, , .                                                                                        |           | Ο                  |
| 72 | Recent progress in the understanding of mode instabilities. Proceedings of SPIE, 2015, , .                                                                            | 0.8       | 2                  |

| #  | Article                                                                                                                                                                  | IF           | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 73 | Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. Optics Express, 2015, 23, 13776.                         | 3.4          | 78        |
| 74 | Impact of photodarkening on the mode instability threshold. Optics Express, 2015, 23, 15265.                                                                             | 3.4          | 135       |
| 75 | Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Optics Express, 2015, 23, 20203.                   | 3.4          | 122       |
| 76 | Coherent combination of two Tm-doped fiber amplifiers. Optics Letters, 2015, 40, 2301.                                                                                   | 3.3          | 16        |
| 77 | Efficiency improvement in Thulium-doped fibers via excited state pumping. Proceedings of SPIE, 2014, , .                                                                 | 0.8          | 0         |
| 78 | Passive mitigation of mode instabilities. , 2014, , .                                                                                                                    |              | 2         |
| 79 | Breaking the symmetry for enhanced higher-order mode delocalization. , 2014, , .                                                                                         |              | 3         |
| 80 | 146W continuous wave ytterbium doped fiber amplifier at 1009 nm. Proceedings of SPIE, 2014, , .                                                                          | 0.8          | 0         |
| 81 | Analysis of stimulated Raman scattering in cw kW fiber oscillators. Proceedings of SPIE, 2014, , .                                                                       | 0.8          | 26        |
| 82 | Smoothed spectra for enhanced dispersion-free pulse duration reduction of passively Q-switched microchip lasers. Optics Letters, 2014, 39, 505.                          | 3.3          | 1         |
| 83 | Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems. Optica, 2014,<br>1, 233.                                                        | 9.3          | 114       |
| 84 | 1009  nm continuous-wave ytterbium-doped fiber amplifier emitting 146  W. Optics Letters, 2                                                                              | 20134,339, 3 | 372156.   |
| 85 | Yb-doped Rod-type Fiber Amplifier with 2 kW Average Power. , 2014, , .                                                                                                   |              | 0         |
| 86 | Scaling the mode instability threshold with multicore fibers. Optics Letters, 2014, 39, 2680.                                                                            | 3.3          | 60        |
| 87 | All-fiber Raman oscillator for the generation of radially and azimuthally polarized beams. , 2014, , .                                                                   |              | 0         |
| 88 | High gain ytterbium doped Ge pedestal large pitch fiber. , 2014, , .                                                                                                     |              | 0         |
| 89 | Performance Scaling of Ultrafast Laser Systems by Coherent Addition of Femtosecond Pulses. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2014, 20, 268-277. | 2.9          | 35        |
|    |                                                                                                                                                                          |              |           |

2  kW average power from a pulsed Yb-doped rod-type fiber amplifier. Optics Letters, 2014, 39, 6446. 3.3 56

| #   | Article                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems. Optics Letters, 2014,<br>39, 209.                                | 3.3  | 25        |
| 92  | 152  W average power Tm-doped fiber CPA system. Optics Letters, 2014, 39, 4671.                                                                    | 3.3  | 85        |
| 93  | Widely tunable parametric generation of picosecond visible and mid-infrared radiation in optical fibers. , 2013, , .                               |      | 0         |
| 94  | High-power fibre lasers. Nature Photonics, 2013, 7, 861-867.                                                                                       | 31.4 | 924       |
| 95  | Passive mitigation strategies for mode instabilities in high-power fiber laser systems. Optics Express, 2013, 21, 19375.                           | 3.4  | 87        |
| 96  | An all-fiber Raman laser for cylindrical vector beam generation. Laser Physics Letters, 2013, 10, 125108.                                          | 1.4  | 7         |
| 97  | Mitigation of mode instabilities by dynamic excitation of fiber modes. Proceedings of SPIE, 2013, , .                                              | 0.8  | 5         |
| 98  | 24ÂmJ, 33ÂW Q-switched Tm-doped fiber laser with near diffraction-limited beam quality. Optics Letters, 2013, 38, 97.                              | 3.3  | 74        |
| 99  | Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Optics Express, 2013, 21, 17285.                        | 3.4  | 72        |
| 100 | Analysis of passively combined divided-pulse amplification as an energy-scaling concept. Optics Express, 2013, 21, 29031.                          | 3.4  | 40        |
| 101 | High-power thermally guiding index-antiguiding-core fibers. Optics Letters, 2013, 38, 510.                                                         | 3.3  | 24        |
| 102 | Improved Modal Reconstruction for Spatially and Spectrally Resolved Imaging \$({m S}^{2})\$. Journal of Lightwave Technology, 2013, 31, 1295-1299. | 4.6  | 17        |
| 103 | High power, high energy Tm-doped Q-switched large-pitch fiber laser. , 2013, , .                                                                   |      | Ο         |
| 104 | Temperature as a guiding mechanism for high-power very-large-mode-area active fibers. , 2013, , .                                                  |      | 0         |
| 105 | Mitigation strategies for mode instabilities in high-power fiber-laser systems. , 2013, , .                                                        |      | 0         |
| 106 | Mode instabilities in large-mode-area fiber amplifiers. , 2013, , .                                                                                |      | 1         |
| 107 | On the power threshold of mode instabilities. , 2013, , .                                                                                          |      | 0         |
| 108 | Fiber amplifier CPA system using divided-pulse amplification for multi-mJ extraction. , 2013, , .                                                  |      | 0         |

Fiber amplifier CPA system using divided-pulse amplification for multi-mJ extraction. , 2013, , . 108

| #   | Article                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Radial and azimuthal polarized all-fiber Raman oscillator. , 2013, , .                                                                                |     | Ο         |
| 110 | 58 mJ burst containing ultra-short pulses with homogenous energy level from an Yb-doped fiber amplifier. , 2013, , .                                  |     | 0         |
| 111 | Mode instabilities: physical origin and mitigation strategies. Proceedings of SPIE, 2013, , .                                                         | 0.8 | Ο         |
| 112 | CGH-based real-time analysis of fiber Bragg gratings in few mode LMA fibers. Proceedings of SPIE, 2012, , .                                           | 0.8 | 2         |
| 113 | Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems. Optics Express, 2012, 20, 440.           | 3.4 | 78        |
| 114 | Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing. Optics Express, 2012, 20, 12004.                               | 3.4 | 36        |
| 115 | Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering<br>microscopy. Optics Express, 2012, 20, 26583.          | 3.4 | 63        |
| 116 | Fiber based generation of azimuthally polarized light. Proceedings of SPIE, 2012, , .                                                                 | 0.8 | 3         |
| 117 | 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Optics Letters, 2012, 37, 1073.                                | 3.3 | 137       |
| 118 | Thermally induced waveguide changes in active fibers. Optics Express, 2012, 20, 3997.                                                                 | 3.4 | 108       |
| 119 | Physical origin of mode instabilities in high-power fiber laser systems. Optics Express, 2012, 20, 12912.                                             | 3.4 | 200       |
| 120 | 58ÂmJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber<br>amplifier. Optics Letters, 2012, 37, 5169.            | 3.3 | 39        |
| 121 | Dispersion-free pulse duration reduction of passively Q-switched microchip lasers. Optics Letters, 2012, 37, 4401.                                    | 3.3 | 13        |
| 122 | Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers. Optics Express, 2012, 20, 15710.                                   | 3.4 | 231       |
| 123 | High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers. Optics Express, 2012, 20, 24957. | 3.4 | 31        |
| 124 | High-power very large mode-area thulium-doped fiber laser. Optics Letters, 2012, 37, 4546.                                                            | 3.3 | 46        |
| 125 | High power Q-switched fiber laser system emitting 26 mJ pulses with near diffraction-limited beam quality. , 2012, , .                                |     | 0         |
| 126 | Fiber Optical Parametric Frequency Conversion: Alignment and Maintenance Free All-fiber Laser<br>Concept for CARS Microscopy. , 2012, , .             |     | 0         |

| #   | Article                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | On the thermal origin of mode instabilities in high power fiber lasers. , 2012, , .                                                                      |      | 3         |
| 128 | Alignment and maintenance free all-fiber laser source for CARS microscopy based on frequency conversion by four-wave-mixing. , 2012, , .                 |      | 1         |
| 129 | All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion.<br>Optics Express, 2012, 20, 4484.                    | 3.4  | 98        |
| 130 | 26-mJ pulse energy Q-switched large-pitch fiber laser system with excellent beam quality. Proceedings of SPIE, 2012, , .                                 | 0.8  | 2         |
| 131 | Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light: Science and Applications, 2012, 1, e8-e8. | 16.6 | 251       |
| 132 | On the Raman threshold of passive large mode area fibers. Proceedings of SPIE, 2011, , .                                                                 | 0.8  | 12        |
| 133 | Fiber chirped-pulse amplification system emitting 38 GW peak power. Optics Express, 2011, 19, 255.                                                       | 3.4  | 243       |
| 134 | The impact of modal interference on the beam quality of high-power fiber amplifiers. Optics Express, 2011, 19, 3258.                                     | 3.4  | 202       |
| 135 | Preferential gain photonic-crystal fiber for mode stabilization at high average powers. Optics Express, 2011, 19, 8656.                                  | 3.4  | 46        |
| 136 | Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination. Optics Express, 2011, 19, 12081.                                                      | 3.4  | 29        |
| 137 | Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Optics Express, 2011, 19, 13218.             | 3.4  | 541       |
| 138 | Avoided crossings in photonic crystal fibers. Optics Express, 2011, 19, 13578.                                                                           | 3.4  | 56        |
| 139 | Fiber based polarization filter for radially and azimuthally polarized light. Optics Express, 2011, 19, 19582.                                           | 3.4  | 29        |
| 140 | High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. Optics Letters, 2011, 36, 244.                                         | 3.3  | 62        |
| 141 | High average power large-pitch fiber amplifier with robust single-mode operation. Optics Letters, 2011, 36, 689.                                         | 3.3  | 185       |
| 142 | High-speed modal decomposition of mode instabilities in high-power fiber lasers. Optics Letters, 2011, 36, 4572.                                         | 3.3  | 151       |
| 143 | Impact of modal interference on high-power fiber laser systems. Proceedings of SPIE, 2011, , .                                                           | 0.8  | 0         |
| 144 | Robust single-mode ytterbium-doped large pitch fiber emitting 294 W. , 2011, , .                                                                         |      | 0         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Real-time characterisation of modal content in monolithic few-mode fibre lasers. Electronics Letters, 2011, 47, 274.                                                                   | 1.0 | 11        |
| 146 | Suppression of stimulated Raman scattering in high-power fiber laser systems by lumped spectral filters. , 2010, , .                                                                   |     | 0         |
| 147 | Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter. , 2010, , .                                                                          |     | 6         |
| 148 | Fiber based ultrashort pulse laser systems at ultrahigh average power levels. Proceedings of SPIE, 2010, , .                                                                           | 0.8 | 0         |
| 149 | Influence of Index Depressions in Active Large Pitch Fibers. , 2010, , .                                                                                                               |     | 0         |
| 150 | The influence of index-depressions in core-pumped Yb-doped large pitch fibers. Optics Express, 2010, 18, 26834.                                                                        | 3.4 | 85        |
| 151 | Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers. Optics Letters, 2010, 35, 2982.                                             | 3.3 | 67        |
| 152 | Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1011.                                 | 2.1 | 36        |
| 153 | All-fiber side pump combiner for high-power fiber lasers and amplifiers. , 2010, , .                                                                                                   |     | 6         |
| 154 | In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by<br>Brillouin optical time domain analysis. Electronics Letters, 2009, 45, 153. | 1.0 | 6         |
| 155 | High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2009, 15, 159-169.        | 2.9 | 67        |
| 156 | Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.<br>Optics Letters, 2009, 34, 3304.                                                    | 3.3 | 177       |
| 157 | Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber. Optics Letters, 2009, 34, 3499.          | 3.3 | 99        |
| 158 | Derivation of Raman treshold formulas for CW double-clad fiber amplifiers. Optics Express, 2009, 17, 8476.                                                                             | 3.4 | 59        |
| 159 | Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems. Optics Express, 2009, 17, 16255.     | 3.4 | 37        |
| 160 | Ultrashort pulse laser drilling of metals using a high-repetition rate high average power fiber CPA system. , 2009, , .                                                                |     | 5         |
| 161 | 94 W 980 nm high brightness Yb-doped fiber laser. Optics Express, 2008, 16, 17310.                                                                                                     | 3.4 | 147       |
|     |                                                                                                                                                                                        |     |           |

Periodic Signal Processing Using a Brillouin Gain Comb. , 2008, , .

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Fabrication of FBGs With an Arbitrary Spectrum. IEEE Sensors Journal, 2008, 8, 1287-1291.                                                                                       | 4.7 | 9         |
| 164 | Cavity ring-down in a photonic bandgap fiber gas cell. , 2008, , .                                                                                                              |     | 6         |
| 165 | Delay-gain decoupling in Brillouin-assisted slow light. Optics Letters, 2007, 32, 2701.                                                                                         | 3.3 | 3         |
| 166 | Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects. Optics Express, 2007, 15, 5126.                                                                       | 3.4 | 17        |
| 167 | New Approaches to Extending the Performance of Brillouin Based Slow Light Systems. Conference<br>Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , . | 0.0 | 0         |
| 168 | New raw material discrimination system based on a spatial optical spectroscopy technique. Sensors and Actuators A: Physical, 2007, 135, 605-612.                                | 4.1 | 24        |
| 169 | Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor. Sensors and Actuators A: Physical, 2007, 137, 68-73.              | 4.1 | 93        |
| 170 | Multiparameter sensor based on a chaotic fiber-ring resonator. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2024.                                    | 2.1 | 10        |
| 171 | Fast algorithm for spectral processing with application to on-line welding quality assurance.<br>Measurement Science and Technology, 2006, 17, 2623-2629.                       | 2.6 | 31        |
| 172 | Digital adaptative filters for interrogating fiber optic sensors. , 2005, 5855, 900.                                                                                            |     | 0         |
| 173 | Virtual long-period gratings. Optics Letters, 2005, 30, 14.                                                                                                                     | 3.3 | 22        |
| 174 | Interrogation of fibre Bragg gratings with a tilted fibre Bragg grating. Measurement Science and Technology, 2004, 15, 1596-1600.                                               | 2.6 | 4         |
| 175 | Interrogation of interferometric sensors with a tilted fiber Bragg grating. Optics Express, 2004, 12, 5646.                                                                     | 3.4 | 6         |
| 176 | Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating. Optics Letters, 2004, 29, 676.                                                            | 3.3 | 25        |