
Stephan M Levonis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient and robust HPLC method to determine the sialylation levels of human epithelial cells. PLoS ONE, 2022, 17, e0257178.	2.5	0
2	Gamified Virtual Laboratory Experience for In-Person and Distance Students. Journal of Chemical Education, 2022, 99, 1183-1189.	2.3	7
3	360° Virtual Laboratory Tour with Embedded Skills Videos. Journal of Chemical Education, 2021, 98, 651-654.	2.3	13
4	The potential association between PARP14 and SARS-CoV-2 infection (COVID-19). Future Medicinal Chemistry, 2021, 13, 587-592.	2.3	10
5	From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer. Nutrition Research, 2020, 74, 23-36.	2.9	23
6	Insights Gained While Teaching First Semester Chemistry in the Time of COVID-19 at Bond University in Australia. Journal of Chemical Education, 2020, 97, 2863-2865.	2.3	10
7	In silico identification and in vitro activity of natural products as ADP-ribosyl transferase member 8Âinhibitors. Future Medicinal Chemistry, 2020, 12, 1729-1741.	2.3	2
8	A quick guide to producing a virtual chemistry course for online education. Future Medicinal Chemistry, 2020, 12, 1289-1291.	2.3	4
9	Recent developments in PARP14 research. Future Medicinal Chemistry, 2020, 12, 1657-1667.	2.3	6
10	Engaging Health Student in Learning Organic Chemistry Reaction Mechanisms Using Short and Snappy Lightboard Videos. Journal of Chemical Education, 2020, 97, 3867-3871.	2.3	8
11	A Visual Organic Chemistry Reaction: The Synthesis of 4-Amino-3-nitrobenzoic Acid Methyl Ester via Fischer Esterification. Journal of Chemical Education, 2020, 97, 1997-2000.	2.3	2
12	Navigating the intricacies of molecular docking. Future Medicinal Chemistry, 2020, 12, 469-471.	2.3	9
13	αâ€Aminophosphonates as Potential PARP1 Inhibitors. ChemistrySelect, 2020, 5, 4205-4209.	1.5	9
14	In silico family-wide profiling and 3D modelling of the poly(ADP-ribose) polymerase superfamily. Future Medicinal Chemistry, 2020, 12, 2105-2122.	2.3	2
15	Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14. Future Medicinal Chemistry, 2020, 12, 2179-2190.	2.3	1
16	Combining versatility with cost-effectiveness: Determination of both free and bound sialic acids, N-acetylneuraminic and N-glycolylneuraminic in unprocessed bovine milk. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1104, 130-133.	2.3	4
17	Structure, Function and Inhibition of Poly(ADP-ribose)polymerase, Member 14 (PARP14). Mini-Reviews in Medicinal Chemistry, 2018, 18, 1659-1669.	2.4	28
18	Crystallization-induced amide bond formation creates a boron-centered spirocyclic system. Heterocyclic Communications, 2017, 23, 167-169.	1.2	4

STEPHAN M LEVONIS

#	Article	IF	CITATIONS
19	A Practical Guide to Molecular Docking and Homology Modelling for Medicinal Chemists. Current Topics in Medicinal Chemistry, 2017, 17, 2023-2040.	2.1	103
20	Boric Acid Catalyzed Methyl Esterification of Sugar Acids. Australian Journal of Chemistry, 2014, 67, 528.	0.9	10
21	Comparing Self-Assembling and Covalent Fluorescent Boronolectins for the Detection of Free Sialic Acid. Australian Journal of Chemistry, 2011, 64, 1454.	0.9	7
22	2-Propynyl 2-hydroxybenzoate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o226-o227.	0.2	2
23	Boronolectin with divergent fluorescent response specific for free sialic acid. Chemical Communications, 2009, , 2278.	4.1	43
24	Enhanced fructose, glucose and lactose transport promoted by a lipophilic 2-(aminomethyl)-phenylboronic acid. Tetrahedron, 2008, 64, 7122-7126.	1.9	18
25	Tapping into Boron/?-Hydroxycarboxylic Acid Interactions in Sensing and Catalysis. Australian Journal of Chemistry, 2007, 60, 811.	0.9	29
26	Selective Monoesterification of Malonic Acid Catalyzed by Boric Acid. Australian Journal of Chemistry, 2007, 60, 821.	0.9	26