
Kim Van der Heiden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. Journal of Nuclear Cardiology, 2021, 28, 2506-2513.	1.4	12
2	Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. Journal of Lipid Research, 2021, 62, 100020.	2.0	27
3	Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Research, 2021, 11, 27.	1.1	7
4	Micro Spectroscopic Photoacoustic (μsPA) imaging of advanced carotid atherosclerosis. Photoacoustics, 2021, 22, 100261.	4.4	9
5	Nuclear Imaging of Post-infarction Inflammation in Ischemic Cardiac Diseases - New Radiotracers for Potential Clinical Applications. Current Radiopharmaceuticals, 2021, 14, 184-208.	0.3	2
6	Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Cardiovascular Research, 2020, 116, 1136-1146.	1.8	66
7	Contemporary rationale for non-invasive imaging of adverse coronary plaque features to identify the vulnerable patient:Âa Position Paper from the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology and the European Association of Cardiovascular Imaging. European Heart Iournal Cardiovascular Imaging. 2020. 21. 1177-1183.	0.5	29
8	A mouse model of humanized liver shows a human-like lipid profile, but does not form atherosclerotic plaque after western type diet. Biochemical and Biophysical Research Communications, 2020, 524, 510-515.	1.0	9
9	Imaging of inflammatory cellular protagonists in human atherosclerosis: a dual-isotope SPECT approach. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2856-2865.	3.3	5
10	Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry, 2019, 30, 1790-1800.	1.2	22
11	Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. European Heart Journal, 2019, 40, 3421-3433.	1.0	178
12	Variation in Coronary Atherosclerosis Severity Related to a Distinct LDL (Low-Density Lipoprotein) Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2338-2352.	1.1	19
13	An MRI-based method to register patient-specific wall shear stress data to histology. PLoS ONE, 2019, 14, e0217271.	1.1	3
14	Targeting Inflammatory Protagonists with Nuclear Imaging: A Novel Dual-Radiotracer Approach. Journal of Cardiovascular Computed Tomography, 2019, 13, S24.	0.7	0
15	Calcifications in atherosclerotic plaques and impact on plaque biomechanics. Journal of Biomechanics, 2019, 87, 1-12.	0.9	61
16	Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with 111In-DANBIRT. Journal of Nuclear Cardiology, 2019, 26, 1697-1704.	1.4	16
17	Animal models for plaque rupture: a biomechanical assessment. Thrombosis and Haemostasis, 2016, 115, 501-508.	1.8	25
18	Biomechanics in vascular biology and cardiovascular disease. Thrombosis and Haemostasis, 2016, 115, 465-466.	1.8	4

Kim Van der Heiden

#	Article	IF	CITATIONS
19	Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thrombosis and Haemostasis, 2016, 116, 181-190.	1.8	20
20	Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress. BioMedical Engineering OnLine, 2016, 15, 156.	1.3	13
21	TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis. Circulation Research, 2016, 119, 450-462.	2.0	115
22	Atherosclerotic Plaque Destabilization in Mice: A Comparative Study. PLoS ONE, 2015, 10, e0141019.	1.1	31
23	Should ethnicity be included in cardiovascular risk stratification?. Netherlands Heart Journal, 2015, 23, 42-43.	0.3	3
24	Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis, 2015, 241, 100-110.	0.4	41
25	Folate Receptor–Targeted Single-Photon Emission Computed Tomography/Computed Tomography to Detect Activated Macrophages in Atherosclerosis: Can It Distinguish Vulnerable from Stable Atherosclerotic Plaques?. Molecular Imaging, 2014, 13, 7290.2013.00061.	0.7	26
26	The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovascular Research, 2013, 99, 269-275.	1.8	103
27	Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation, 2012, 83, S56-S61.	1.0	67
28	Tgfβ/Alk5 signaling is required for shear stress induced klf2 expression in embryonic endothelial cells. Developmental Dynamics, 2011, 240, 1670-1680.	0.8	55
29	Role for Primary Cilia as Flow Detectors in the Cardiovascular System. International Review of Cell and Molecular Biology, 2011, 290, 87-119.	1.6	24
30	Disturbed Blood Flow Induces RelA Expression via c-Jun N-Terminal Kinase 1. Circulation Research, 2011, 108, 950-959.	2.0	105
31	Role of nuclear factor $\hat{I}^{ m g}$ B in cardiovascular health and disease. Clinical Science, 2010, 118, 593-605.	1.8	211
32	c-Jun N-Terminal Kinase Primes Endothelial Cells at Atheroprone Sites for Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 546-553.	1.1	61
33	Activation of Nrf2 in Endothelial Cells Protects Arteries From Exhibiting a Proinflammatory State. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1851-1857.	1.1	216
34	Endothelial mechanosensing by primary cilia. FASEB Journal, 2009, 23, 828.3.	0.2	0
35	Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis, 2008, 196, 542-550.	0.4	150
36	Deciphering the Endothelial Shear Stress Sensor. Circulation, 2008, 117, 1124-1126.	1.6	46

Kim Van der Heiden

#	Article	IF	CITATIONS
37	Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane!. Scientific World Journal, The, 2008, 8, 212-222.	0.8	53
38	The Role of Shear Stress on ET-1, KLF2, and NOS-3 Expression in the Developing Cardiovascular System of Chicken Embryos in a Venous Ligation Model. Physiology, 2007, 22, 380-389.	1.6	90
39	Monocilia on chicken embryonic endocardium in low shear stress areas. Developmental Dynamics, 2006, 235, 19-28.	0.8	124
40	Primary cilia as biosensors for blood flow: lessons from cardiovascular development. FASEB Journal, 2006, 20, A409.	0.2	0