Sandra Citi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524216/publications.pdf

Version: 2024-02-01

82	5,610	41	73
papers	citations	h-index	g-index
99	99	99	4629
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The ACE2 Receptor for Coronavirus Entry Is Localized at Apical Cellâ€"Cell Junctions of Epithelial Cells. Cells, 2022, 11, 627.	1.8	13
2	Cingulin binds to the ZU5 domain of scaffolding protein ZO-1 to promote its extended conformation, stabilization, and tight junction accumulation. Journal of Biological Chemistry, 2022, 298, 101797.	1.6	12
3	The PLEKHA7–PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. Journal of Biological Chemistry, 2022, 298, 102138.	1.6	2
4	WW, PH and C-Terminal Domains Cooperate to Direct the Subcellular Localizations of PLEKHA5, PLEKHA6 and PLEKHA7. Frontiers in Cell and Developmental Biology, 2021, 9, 729444.	1.8	6
5	PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis. Molecular Biology of the Cell, 2021, 32, ar34.	0.9	16
6	The tight junction protein cingulin regulates the vascular response to burn injury in a mouse model. Microvascular Research, 2020, 132, 104067.	1.1	9
7	Cooperative binding of the tandem WW domains of PLEKHA7 to PDZD11 promotes conformation-dependent interaction with tetraspanin 33. Journal of Biological Chemistry, 2020, 295, 9299-9312.	1.6	6
8	Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183399.	1.4	58
9	Cell Biology: Tight Junctions as Biomolecular Condensates. Current Biology, 2020, 30, R83-R86.	1.8	11
10	R40.76 binds to the \hat{l}_{\pm} domain of ZO-1: role of ZO-1 ($\hat{l}_{\pm}+$) in epithelial differentiation and mechano-sensing. Tissue Barriers, 2019, 7, e1653748.	1.6	8
11	The mechanobiology of tight junctions. Biophysical Reviews, 2019, 11, 783-793.	1.5	96
12	LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF- \hat{l}^2 . Nature Communications, 2019, 10, 1969.	5.8	68
13	Intestinal barriers protect against disease. Science, 2018, 359, 1097-1098.	6.0	171
14	A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Reports, 2018, 25, 2132-2147.e7.	2.9	40
15	The role of microtubules in the regulation of epithelial junctions. Tissue Barriers, 2018, 6, 1539596.	1.6	48
16	The role of apical cell–cell junctions and associated cytoskeleton in mechanotransduction. Biology of the Cell, 2017, 109, 139-161.	0.7	60
17	Cellâ€specific diversity in the expression and organization of cytoplasmic plaque proteins of apical junctions. Annals of the New York Academy of Sciences, 2017, 1405, 160-176.	1.8	19
18	Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors. Current Biology, 2017, 27, 3783-3795.e8.	1.8	123

#	Article	IF	CITATIONS
19	Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells. Nature Communications, 2016, 7, 12426.	5.8	80
20	PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling. International Journal of Biochemistry and Cell Biology, 2016, 75, 112-116.	1.2	22
21	Role of Cingulin in Agonist-induced Vascular Endothelial Permeability. Journal of Biological Chemistry, 2016, 291, 23681-23692.	1.6	20
22	Grete Kellenberger-Gujer: Molecular biology research pioneer. Bacteriophage, 2016, 6, 1-12.	1.9	2
23	PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. Journal of Biological Chemistry, 2016, 291, 11016-11029.	1.6	28
24	Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 647-654.	1.1	42
25	The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas. PLoS ONE, 2015, 10, e0135442.	1.1	19
26	The adherens junctions control susceptibility to <i>Staphylococcus aureus</i> \hat{l} ±-toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14337-14342.	3.3	68
27	Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120Âcatenin activity. Nature Cell Biology, 2015, 17, 1145-1157.	4.6	93
28	ZO Proteins Redundantly Regulate the Transcription Factor DbpA/ZONAB. Journal of Biological Chemistry, 2014, 289, 22500-22511.	1.6	38
29	PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers, 2014, 2, e28755.	1.6	43
30	MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Molecular Biology of the Cell, 2014, 25, 1995-2005.	0.9	47
31	Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases, 2014, 5, e973760.	0.7	152
32	Toll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1. Tissue Barriers, 2014, 2, e29166.	1.6	33
33	The Junctional Proteins Cingulin and Paracingulin Modulate the Expression of Tight Junction Protein Genes through GATA-4. PLoS ONE, 2013, 8, e55873.	1.1	24
34	Distinct Domains of Paracingulin Are Involved in Its Targeting to the Actin Cytoskeleton and Regulation of Apical Junction Assembly. Journal of Biological Chemistry, 2012, 287, 13159-13169.	1.6	11
35	Cingulin is dispensable for epithelial barrier function and tight junction structure, and plays a role in the control of claudin-2 expression and response to duodenal mucosa injury. Journal of Cell Science, 2012, 125, 5005-14.	1.2	43
36	The control of gene expression and cell proliferation by the epithelial apical junctional complex. Essays in Biochemistry, 2012, 53, 83-93.	2.1	27

#	Article	IF	Citations
37	Cingulin, paracingulin, and PLEKHA7: signaling and cytoskeletal adaptors at the apical junctional complex. Annals of the New York Academy of Sciences, 2012, 1257, 125-132.	1.8	49
38	A Role for ZO-1 and PLEKHA7 in Recruiting Paracingulin to Tight and Adherens Junctions of Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 16743-16750.	1.6	59
39	Regulation of small GTPases at epithelial cell-cell junctions. Molecular Membrane Biology, 2011, 28, 427-444.	2.0	58
40	Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Molecular Membrane Biology, 2011, 28, 123-135.	2.0	30
41	PLEKHA7 Is an Adherens Junction Protein with a Tissue Distribution and Subcellular Localization Distinct from ZO-1 and E-Cadherin. PLoS ONE, 2010, 5, e12207.	1.1	78
42	The Tight Junction Protein Cingulin Regulates Gene Expression and RhoA Signaling. Annals of the New York Academy of Sciences, 2009, 1165, 88-98.	1.8	41
43	The cytoplasmic plaque of tight junctions: A scaffolding and signalling center. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 601-613.	1.4	166
44	Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Molecular Membrane Biology, 2008, 25, $1-13$.	2.0	34
45	Paracingulin Regulates the Activity of Rac1 and RhoA GTPases by Recruiting Tiam1 and GEF-H1 to Epithelial Junctions. Molecular Biology of the Cell, 2008, 19, 4442-4453.	0.9	78
46	Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Modern Pathology, 2007, 20, 947-954.	2.9	88
47	Tight junction formation in early Xenopus laevis embryos: identification and ultrastructural characterization of junctional crests and junctional vesicles. Cell and Tissue Research, 2007, 330, 247-256.	1.5	5
48	Cingulin Regulates Claudin-2 Expression and Cell Proliferation through the Small GTPase RhoA. Molecular Biology of the Cell, 2006, 17, 3569-3577.	0.9	96
49	Cingulin, a Cytoskeleton-Associated Protein of the Tight Junction. , 2006, , 54-63.		10
50	Binding of GEF-H1 to the Tight Junction-Associated Adaptor Cingulin Results in Inhibition of Rho Signaling and G1/S Phase Transition. Developmental Cell, 2005, 8, 777-786.	3.1	182
51	Disruption of the cingulin gene does not prevent tight junction formation but alters gene expression. Journal of Cell Science, 2004, 117, 5245-5256.	1.2	81
52	Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Molecular Cancer Research, 2004, 2, 692-701.	1.5	62
53	Histone Deacetylase Inhibitors Up-Regulate the Expression of Tight Junction Proteins. Molecular Cancer Research, 2004, 2, 692-701.	1.5	128
54	Evidence for a Functional Interaction between Cingulin and ZO-1 in Cultured Cells. Journal of Biological Chemistry, 2002, 277, 27757-27764.	1.6	60

#	Article	IF	CITATIONS
55	Molecular complexity of vertebrate tight junctions (Review). Molecular Membrane Biology, 2002, 19, 103-112.	2.0	104
56	Cingulin interacts with F-actin in vitro. FEBS Letters, 2001, 507, 21-24.	1.3	74
57	The Cytoplasmic Plaque Proteins of the Tight Junction. , 2001, , .		5
58	Interaction of Junctional Adhesion Molecule with the Tight Junction Components ZO-1, Cingulin, and Occludin. Journal of Biological Chemistry, 2000, 275, 20520-20526.	1.6	411
59	Human and Xenopus Cingulin Share a Modular Organization of the Coiled-Coil Rod Domain: Predictions for Intra- and Intermolecular Assembly. Journal of Structural Biology, 2000, 131, 135-145.	1.3	31
60	Introduction: opening up tight junctions. Seminars in Cell and Developmental Biology, 2000, 11, 277-279.	2.3	4
61	Tight junction biogenesis in the early Xenopus embryo. Mechanisms of Development, 2000, 96, 51-65.	1.7	65
62	Differentiation of the epithelial apical junctional complex during mouse preimplantation development: a role for rab13 in the early maturation of the tight junction. Mechanisms of Development, 2000, 97, 93-104.	1.7	91
63	Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin. Journal of Cell Biology, 1999, 147, 1569-1582.	2.3	267
64	Xenopus laevis occludin . Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. FEBS Journal, 1999, 264, 374-384.	0.2	73
65	The Molecular Basis for the Structure, Function, and Regulation of Tight Junctions. Advances in Molecular and Cell Biology, 1999, 28, 203-233.	0.1	6
66	Tight junction proteins 1 This review is dedicated to the memory of Thomas Kreis. 1. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 1-11.	1.9	85
67	Tight junctions in early amphibian development: Detection of junctional cingulin from the 2-cell stage and its localization at the boundary of distinct membrane domains in dividing blastomeres in low calcium. Developmental Dynamics, 1996, 207, 104-113.	0.8	54
68	Tight junctions in early amphibian development: Detection of junctional cingulin from the 2-cell stage and its localization at the boundary of distinct membrane domains in dividing blastomeres in low calcium., 1996, 207, 104.		1
69	Vascular Smooth Muscle Cells of H-2K ^b -tsA58 Transgenic Mice. Circulation, 1995, 92, 3289-3296.	1.6	36
70	Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cytoskeleton, 1994, 29, 321-338.	4.4	106
71	The molecular organization of tight junctions Journal of Cell Biology, 1993, 121, 485-489.	2.3	201
72	Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. Journal of Cell Biology, 1992, 117, 169-178.	2.3	276

#	Article	IF	CITATIONS
73	The role of phosphorylation in development of tight junctions in cultured renal epithelial (MDCK) cells. Biochemical and Biophysical Research Communications, 1991, 181, 548-553.	1.0	82
74	Molecular analysis of the tight junction. Proceedings Annual Meeting Electron Microscopy Society of America, 1989, 47, 810-811.	0.0	0
75	Brush border myosin filament assembly and interaction with actin investigated with monoclonal antibodies. Journal of Muscle Research and Cell Motility, 1988, 9, 306-319.	0.9	11
76	Cingulin, a new peripheral component of tight junctions. Nature, 1988, 333, 272-276.	13.7	490
77	How phosphorylation controls the self-assembly of vertebrate smooth and non-muscle myosins. Biochemical Society Transactions, 1988, 16, 501-503.	1.6	7
78	Polymerization of vertebrate non-muscle and smooth muscle myosins. Journal of Molecular Biology, 1987, 198, 241-252.	2.0	89
79	Effects of light chain phosphorylation and skeletal myosin on the stability of non-muscle myosin filaments. Journal of Molecular Biology, 1987, 198, 253-262.	2.0	15
80	Regulation of non-muscle myosin structure and function. BioEssays, 1987, 7, 155-159.	1.2	74
81	Studies on the structure and conformation of brush border myosin using monoclonal antibodies. FEBS Journal, 1987, 165, 315-325.	0.2	22
82	Regulation in vitro of brush border myosin by light chain phosphorylation. Journal of Molecular Biology, 1986, 188, 369-382.	2.0	59