Pushkar M Kulkarni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/552406/publications.pdf

Version: 2024-02-01

687363 996975 17 556 13 15 citations h-index g-index papers 17 17 17 590 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A highâ€specificity anilineâ€based mass tag for aldehyde detection. Rapid Communications in Mass Spectrometry, 2022, 36, e9322.	1.5	O
2	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	6.4	40
3	Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation. Molecules, 2020, 25, 417.	3.8	26
4	Focused structure-activity relationship profiling around the 2-phenylindole scaffold of a cannabinoid type-1 receptor agonist-positive allosteric modulator: site-III aromatic-ring congeners with enhanced activity and solubility. Bioorganic and Medicinal Chemistry, 2020, 28, 115727.	3.0	5
5	ldentification of CB1 Receptor Allosteric Sites Using Force-Biased MMC Simulated Annealing and Validation by Structure–Activity Relationship Studies. ACS Medicinal Chemistry Letters, 2019, 10, 1216-1221.	2.8	25
6	Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington's disease in the R6/2 mouse model. Neuropharmacology, 2019, 151, 1-12.	4.1	39
7	Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacological Research, 2018, 129, 475-481.	7.1	23
8	Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 2018, 84, 722-733.	1.3	101
9	Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chemical Neuroscience, 2017, 8, 1188-1203.	3.5	78
10	Small molecule inhibitors of PSD95–nNOS protein–protein interactions suppress formalin-evoked Fos protein expression and nociceptive behavior in rats. Neuroscience, 2017, 349, 303-317.	2.3	27
11	Microwaveâ€accelerated Conjugate Addition of 2â€Arylindoles to Substituted βâ€Nitrostyrenes in the Presence of Ammonium Trifluoroacetate: An Efficient Approach for the Synthesis of a Novel Class of CB1 Cannabinoid Receptor Allosteric Modulators. Journal of Heterocyclic Chemistry, 2017, 54, 2079-2084.	2.6	13
12	The in Vivo in Effects of the CB sub 1 / sub - Positive Allosteric Modulator GAT229 on Intraocular Pressure in Ocular Normotensive and Hypertensive Mice. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 582-590.	1.4	21
13	Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chemical Neuroscience, 2016, 7, 776-798.	3.5	30
14	Source memory in rats is impaired by an NMDA receptor antagonist but not by PSD95-nNOS protein–protein interaction inhibitors. Behavioural Brain Research, 2016, 305, 23-29.	2.2	25
15	Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). Journal of Medicinal Chemistry, 2016, 59, 44-60.	6.4	49
16	Small molecule inhibitors of PSD95-nNOS protein–protein interactions as novel analgesics. Neuropharmacology, 2015, 97, 464-475.	4.1	54
17	Three-dimensional quantitative structure–activity relationship approach for the prediction of the antimycobacterial activity of 4-oxo-dihydroquinoline-3-carboxylic acid derivatives. Medicinal Chemistry Research, 2008, 17, 267-280.	2.4	0