
Hualin Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5523857/publications.pdf Version: 2024-02-01

ΗΠΑΓΙΝ ΛΕ

#	Article	IF	CITATIONS
1	Ultrathin MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219.	11.2	473
2	Hierarchical VS ₂ Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Advanced Materials, 2017, 29, 1702061.	21.0	320
3	A Cathode-Integrated Sulfur-Deficient Co ₉ S ₈ Catalytic Interlayer for the Reutilization of "Lost―Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 7073-7082.	14.6	226
4	Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li–S Batteries. ACS Nano, 2019, 13, 14208-14216.	14.6	171
5	Amorphous MoS ₃ as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13091-13096.	7.1	170
6	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodiumâ€Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	19.5	164
7	Elucidating the Catalytic Activity of Oxygen Deficiency in the Polysulfide Conversion Reactions of Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1801868.	19.5	164
8	Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles. Nano Letters, 2017, 17, 4137-4142.	9.1	128
9	Activating Li ₂ S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2234-2245.	17.4	125
10	Simultaneous Cobalt and Phosphorous Doping of MoS ₂ for Improved Catalytic Performance on Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1902096.	19.5	118
11	Nanostructured CuP ₂ /C composites as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21754-21759.	10.3	113
12	Rational Synthesis and Assembly of Ni ₃ S ₄ Nanorods for Enhanced Electrochemical Sodium-Ion Storage. ACS Nano, 2018, 12, 1829-1836.	14.6	104
13	Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Materials, 2022, 48, 82-89.	18.0	83
14	Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?. , 2022, 1, e9120012.		83
15	Engineering SnS ₂ nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 25618-25624.	10.3	79
16	Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Research, 2016, 9, 3162-3170.	10.4	65
17	Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Roomâ€Temperature Liâ€S and Naâ€S Batteries. Advanced Energy Materials, 2018, 8, 1800624.	19.5	64
18	Solid Additives for Improving the Performance of Sulfur Cathodes in Lithium–Sulfur Batteries—Adsorbents, Mediators, and Catalysts. Small Methods, 2020, 4, 1900864.	8.6	60

HUALIN YE

#	Article	IF	CITATIONS
19	Mediator–Assisted Catalysis of Polysulfide Conversion for High–Loading Lithium–Sulfur Batteries Operating Under the Lean Electrolyte Condition. Energy Storage Materials, 2021, 38, 338-343.	18.0	51
20	Iron-based sodium-ion full batteries. Journal of Materials Chemistry A, 2016, 4, 1754-1761.	10.3	50
21	Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode. ACS Applied Materials & Interfaces, 2019, 11, 48062-48070.	8.0	47
22	Roomâ€ŧemperature metal–sulfur batteries: What can we learn from <scp>lithium–sulfur</scp> ?. InformaÄnÃ-Materiály, 2022, 4, .	17.3	45
23	Chemical Bonding Construction of Reduced Graphene Oxide-Anchored Few-Layer Bismuth Oxychloride for Synergistically Improving Sodium-Ion Storage. Chemistry of Materials, 2019, 31, 7311-7319.	6.7	44
24	Elevating the discharge plateau of prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Storage Materials, 2021, 43, 182-189.	18.0	43
25	Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chemical Engineering Journal, 2021, 410, 128284.	12.7	37
26	A hierarchical α-MoC _{1â^'x} hybrid nanostructure for lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 8125-8132.	10.3	34
27	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-7636.	5.1	28
28	Mo <i>_x</i> W _{1â^'} <i>_x</i> (S <i>_y</i> Se _{1â^'} <i> Alloy Nanoflakes for Highâ€Performance Electrocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 2016, 33, 576-582.</i>	_{y2.3}	ub>) _{ 24}
29	Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery. Nano Research, 2022, 15, 2123-2129.	10.4	21
30	A Redox-Mediated Zinc–Air Fuel Cell. ACS Energy Letters, 2022, 7, 2565-2575.	17.4	18
31	Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chemical Engineering Journal, 2021, 420, 130452.	12.7	15
32	Porous polyimide framework based on perylene and triazine for reversible potassium-ion storage. Materials Chemistry Frontiers, 2021, 5, 7184-7190.	5.9	12
33	An integrated approach to improve the performance of lean–electrolyte lithium–sulfur batteries. Journal of Energy Chemistry, 2022, 67, 585-592.	12.9	12
34	Stabilization of lithium metal anodes by conductive metal–organic framework architectures. Journal of Materials Chemistry A, 2021, 9, 12099-12108.	10.3	10
35	Doping Induced Hierarchical Lattice Expansion of Cobalt Diselenide/Carbon Nanosheet Hybrid for Fast and Stable Sodium Storage. Cell Reports Physical Science, 2020, 1, 100082.	5.6	7
36	Ammonium escorted chloride chemistry in stabilizing aqueous chloride ion battery. Materials Today Energy, 2022, 26, 101020.	4.7	6

#	Article	IF	CITATIONS
37	Poly(benzobisthiazole-dione) Frameworks for Highly Reversible Sodium- and Potassium-Ion Storage. Energy & Fuels, 2021, 35, 20367-20373.	5.1	5