U Johnson Alengaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/552293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 2014, 72, 238-245.	6.7	307
2	Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Construction and Building Materials, 2014, 65, 114-121.	7.2	257
3	Graphene nanoplatelet-fly ash based geopolymer composites. Cement and Concrete Research, 2015, 76, 222-231.	11.0	250
4	The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design, 2014, 56, 833-841.	5.1	226
5	Utilization of oil palm kernel shell as lightweight aggregate in concrete – A review. Construction and Building Materials, 2013, 38, 161-172.	7.2	211
6	Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 2017, 148, 62-84.	7.2	209
7	A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 2018, 186, 550-576.	7.2	202
8	Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Materials & Design, 2013, 49, 1034-1041.	5.1	186
9	Recycling of seashell waste in concrete: A review. Construction and Building Materials, 2018, 162, 751-764.	7.2	177
10	Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 2014, 59, 532-539.	5.1	174
11	Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 2016, 117, 122-138.	9.3	171
12	Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 2018, 195, 226-239.	9.3	154
13	Estimating building energy consumption using extreme learning machine method. Energy, 2016, 97, 506-516.	8.8	153
14	Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. Journal of Cleaner Production, 2018, 203, 822-835.	9.3	138
15	Recycling of wastes for value-added applications in concrete blocks: An overview. Resources, Conservation and Recycling, 2018, 138, 298-312.	10.8	138
16	Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 2016, 115, 307-314.	9.3	132
17	A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Materials & Design, 2013, 51, 522-529.	5.1	130
18	Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Materials & Design, 2014, 57, 652-659.	5.1	128

#	Article	IF	CITATIONS
19	Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resources, Conservation and Recycling, 2021, 164, 105103.	10.8	126
20	USE OF RECYCLED CONCRETE AGGREGATE IN CONCRETE: A REVIEW. Journal of Civil Engineering and Management, 2013, 19, 796-810.	3.5	119
21	Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Construction and Building Materials, 2015, 101, 503-521.	7.2	119
22	A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE, 2016, 11, e0147546.	2.5	118
23	High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Construction and Building Materials, 2016, 112, 629-638.	7.2	116
24	Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Materials & Design, 2011, 32, 2143-2148.	5.1	114
25	Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 2016, 120, 251-264.	7.2	113
26	Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 2018, 181, 155-165.	9.3	112
27	The relationship between interlocking mechanism and bond strength in elastic and inelastic segment of splice sleeve. Construction and Building Materials, 2014, 55, 227-237.	7.2	111
28	Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading – A review. Engineering Structures, 2016, 124, 405-417.	5.3	108
29	A new method of producing high strength oil palm shell lightweight concrete. Materials & Design, 2011, 32, 4839-4843.	5.1	107
30	Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. Journal of Cleaner Production, 2016, 135, 148-157.	9.3	106
31	Properties of high-workability concrete with recycled concrete aggregate. Materials Research, 2011, 14, 248-255.	1.3	102
32	Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construction and Building Materials, 2014, 50, 499-507.	7.2	99
33	Engineering properties of oil palm shell lightweight concrete containing fly ash. Materials & Design, 2013, 49, 613-621.	5.1	98
34	Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete. Construction and Building Materials, 2016, 111, 286-297.	7.2	97
35	Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 2016, 120, 112-122.	7.2	96
36	Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete. Construction and Building Materials, 2017, 152, 964-977.	7.2	91

#	Article	IF	CITATIONS
37	Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of Cleaner Production, 2015, 91, 297-304.	9.3	88
38	Durability properties of sustainable concrete containing high volume palm oil waste materials. Journal of Cleaner Production, 2016, 137, 167-177.	9.3	87
39	Oil palm shell lightweight concrete containing high volume ground granulated blast furnace slag. Construction and Building Materials, 2013, 40, 231-238.	7.2	85
40	Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Construction and Building Materials, 2013, 43, 490-496.	7.2	85
41	Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. Journal of Cleaner Production, 2016, 112, 566-574.	9.3	82
42	Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Construction and Building Materials, 2017, 139, 403-418.	7.2	81
43	The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials, 2014, 55, 20-28.	7.2	77
44	Shear behaviour of reinforced palm kernel shell concrete beams. Construction and Building Materials, 2011, 25, 2918-2927.	7.2	74
45	Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. Journal of Cleaner Production, 2017, 161, 477-492.	9.3	71
46	Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. Journal of Cleaner Production, 2016, 112, 763-770.	9.3	69
47	Bond properties of lightweight concrete – A review. Construction and Building Materials, 2016, 112, 478-496.	7.2	67
48	Shear strength of oil palm shell foamed concrete beams. Materials & Design, 2009, 30, 2227-2236.	5.1	66
49	High volume cement replacement by environmental friendly industrial by-product palm oil clinker powder in cement – lime masonry mortar. Journal of Cleaner Production, 2018, 190, 272-284.	9.3	64
50	Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 2015, 16, 59-69.	2.4	63
51	Incorporation of expanded vermiculite lightweight aggregate in cement mortar. Construction and Building Materials, 2018, 179, 302-306.	7.2	63
52	Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Construction and Building Materials, 2018, 163, 482-495.	7.2	62
53	Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability, 2017, 9, 767.	3.2	58
54	Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic. Ceramics International, 2019, 45, 3473-3477.	4.8	57

#	Article	IF	CITATIONS
55	Characteristics of palm oil clinker as replacement for oil palm shell in lightweight concrete subjected to elevated temperature. Construction and Building Materials, 2015, 101, 942-951.	7.2	55
56	Feasibility study on the use of high volume palm oil clinker waste in environmental friendly lightweight concrete. Construction and Building Materials, 2017, 135, 94-103.	7.2	55
57	Effect of particle size and CO ₂ treatment of waste cement powder on properties of cement paste. Canadian Journal of Civil Engineering, 2021, 48, 522-531.	1.3	54
58	Size-Dependent Stress-Strain Model for Unconfined Concrete. Journal of Structural Engineering, 2014, 140, .	3.4	50
59	Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 2016, 53, 1520-1528.	16.4	50
60	Utilization of ground granulated blast furnace slag as partial cement replacement in lightweight oil palm shell concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2545-2556.	3.1	49
61	Influence of lightweight aggregate on the bond properties of concrete with various strength grades. Construction and Building Materials, 2015, 84, 377-386.	7.2	48
62	The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar. Advances in Materials Science and Engineering, 2014, 2014, 1-13.	1.8	46
63	Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Construction and Building Materials, 2017, 148, 369-375.	7.2	46
64	Enhancement of high temperature performance of cement blocks via CO2 curing. Science of the Total Environment, 2019, 671, 827-837.	8.0	45
65	The use of wire mesh–epoxy composite for enhancing the flexural performance of concrete beams. Materials & Design, 2014, 60, 250-259.	5.1	43
66	Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar. Advances in Materials Science and Engineering, 2015, 2015, 1-15.	1.8	42
67	Influence of source materials and the role of oxide composition on the performance of ternary blended sustainable geopolymer mortar. Construction and Building Materials, 2017, 144, 608-623.	7.2	41
68	Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. Journal of Cleaner Production, 2020, 275, 123062.	9.3	41
69	Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. Journal of Cleaner Production, 2016, 133, 414-426.	9.3	40
70	Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Construction and Building Materials, 2017, 130, 113-121.	7.2	40
71	CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening technique. Construction and Building Materials, 2018, 165, 28-44.	7.2	40
72	Sintering behaviour and properties of manganese-doped alumina. Ceramics International, 2019, 45, 7049-7054.	4.8	39

#	Article	IF	CITATIONS
73	Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder. Journal of Building Engineering, 2020, 32, 101655.	3.4	39
74	Sound absorption performance of modified concrete: A review. Journal of Building Engineering, 2020, 30, 101219.	3.4	39
75	Palm Oil Fuel Ash as a Partial Cement Replacement for Producing Durable Self-consolidating High-Strength Concrete. Arabian Journal for Science and Engineering, 2014, 39, 8507-8516.	1.1	38
76	Response of oil palm shell concrete slabs subjected to quasi-static and blast loads. Construction and Building Materials, 2016, 116, 391-402.	7.2	38
77	Influence of Sand/Cement Ratio on Mechanical Properties of Palm Kernel Shell Concrete. Journal of Applied Sciences, 2009, 9, 1764-1769.	0.3	37
78	Pitch spacing effect on the axial compressive behaviour of spirally reinforced concrete-filled steel tube (SRCFT). Thin-Walled Structures, 2016, 100, 213-223.	5.3	34
79	Mechanical, toughness, bond and durability-relatedÂproperties of lightweight concrete reinforced with steel fibres. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	33
80	Exemplification of sustainable sodium silicate waste sediments as coarse aggregates in the performance evaluation of geopolymer concrete. Construction and Building Materials, 2022, 330, 127135.	7.2	33
81	The Effect of Different Parameters on the Development of Compressive Strength of Oil Palm Shell Geopolymer Concrete. Scientific World Journal, The, 2014, 2014, 1-16.	2.1	32
82	Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Construction and Building Materials, 2015, 95, 686-695.	7.2	32
83	Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete. Engineering Structures, 2015, 101, 24-33.	5.3	32
84	A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.8	31
85	Fracture evaluation of multi-layered precast reinforced geopolymer-concrete composite beams by incorporating acoustic emission into mechanical analysis. Construction and Building Materials, 2016, 127, 274-283.	7.2	30
86	Glass Fiber Reinforced Polymer (GFRP) Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique. Polymers, 2017, 9, 180.	4.5	30
87	Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag. Sustainability, 2019, 11, 7194.	3.2	30
88	Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. Journal of Building Engineering, 2021, 35, 102047.	3.4	30
89	Performance evaluation of palm oil clinker sand as replacement for conventional sand in geopolymer mortar. Construction and Building Materials, 2020, 258, 120352.	7.2	29
90	Utilization of Palm Oil Fuel Ash as Binder in Lightweight Oil Palm Shell Geopolymer Concrete. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.8	28

#	Article	IF	CITATIONS
91	Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and Buildings, 2014, 84, 727-739.	6.7	28
92	Prestressing of NSM steel strands to enhance the structural performance of prestressed concrete beams. Construction and Building Materials, 2016, 129, 289-301.	7.2	28
93	Effects of sintering additives on the densification and properties of alumina-toughened zirconia ceramic composites. Ceramics International, 2020, 46, 27539-27549.	4.8	26
94	Bond stress-slip relationship of oil palm shell lightweight concrete. Engineering Structures, 2016, 127, 319-330.	5.3	25
95	Performance evaluation of masonry grout containing high volume of palm oil industry by-products. Journal of Cleaner Production, 2019, 220, 1202-1214.	9.3	25
96	Compressive behaviour of lightweight oil palm shell concrete incorporating slag. Construction and Building Materials, 2015, 94, 263-269.	7.2	24
97	Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate. Procedia Engineering, 2015, 125, 587-593.	1.2	23
98	Near Surface Mounted Composites for Flexural Strengthening of Reinforced Concrete Beams. Polymers, 2016, 8, 67.	4.5	23
99	Prediction of the structural behaviour of oil palm shell lightweight concrete beams. Construction and Building Materials, 2016, 102, 722-732.	7.2	23
100	Microstructural and Strength Characteristics of High-Strength Mortar Using Nontraditional Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	23
101	Engineering performance of sustainable geopolymer foamed and non-foamed concretes. Construction and Building Materials, 2022, 316, 125601.	7.2	23
102	Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers. Journal of Materials Research and Technology, 2021, 15, 6736-6746.	5.8	23
103	Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 2018, 22, 852-868.	2.1	22
104	Torsional and cracking characteristics of steel fiber-reinforced oil palm shell lightweight concrete. Journal of Composite Materials, 2016, 50, 115-128.	2.4	21
105	Influence of fibers on bond strength of concrete exposed to elevated temperature. Journal of Adhesion Science and Technology, 2019, 33, 1521-1543.	2.6	21
106	A new sustainable composite column using an agricultural solid waste as aggregate. Journal of Cleaner Production, 2016, 129, 282-291.	9.3	20
107	Effect of Polypropylene Fibres on the Thermal Conductivity of Lightweight Foamed Concrete. MATEC Web of Conferences, 2018, 150, 03008.	0.2	19
108	Influence of Cementitious Materials and Aggregates Content on Compressive Strength of Palm Kernel Shell Concrete. Journal of Applied Sciences, 2008, 8, 3207-3213.	0.3	19

#	Article	IF	CITATIONS
109	Development of Sustainable Geopolymer Mortar using Industrial Waste Materials. Materials Today: Proceedings, 2016, 3, 125-129.	1.8	18
110	Structural performance of lightweight concrete beams strengthened with side-externally bonded reinforcement (S-EBR) technique using CFRP fabrics. Composites Part B: Engineering, 2019, 176, 107323.	12.0	17
111	Fire resistance performance of composite coating with geopolymerâ€based bioâ€fillers for lightweight panel application. Journal of Applied Polymer Science, 2020, 137, 49558.	2.6	17
112	Bond strength evaluation of palm oil fuel ash-based geopolymer normal weight and lightweight concretes with steel reinforcement. Journal of Adhesion Science and Technology, 2018, 32, 19-35.	2.6	16
113	Effect of microwave sintering on the properties of copper oxide doped Y-TZP ceramics. Ceramics International, 2018, 44, 19639-19645.	4.8	16
114	An overview on the properties of eco-friendly concrete paving blocks incorporating selected waste materials as aggregate. Environmental Science and Pollution Research, 2021, 28, 29009-29036.	5.3	16
115	THE EFFECT OF ASPECT RATIO AND VOLUME FRACTION ON MECHANICAL PROPERTIES OF STEEL FIBRE-REINFORCED OIL PALM SHELL CONCRETE. Journal of Civil Engineering and Management, 2015, 22, 168-177.	3.5	14
116	Valorization of Wastes from Power Plant, Steel-Making and Palm Oil Industries as Partial Sand Substitute in Concrete. Waste and Biomass Valorization, 2018, 9, 1645-1654.	3.4	14
117	Microstructural investigation and durability performance of high volume industrial by-products-based masonry mortars. Construction and Building Materials, 2018, 189, 906-923.	7.2	13
118	Alkali-silica reactivity of lightweight aggregate: A brief overview. Construction and Building Materials, 2021, 270, 121444.	7.2	13
119	Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2021, 174, 23-36.	0.7	13
120	Reactivity Effect of Calcium Carbonate on the Formation of Carboaluminate Phases in Ground Granulated Blast Furnace Slag Blended Cements. Sustainability, 2021, 13, 6504.	3.2	13
121	Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review. Journal of Building Engineering, 2021, 44, 103227.	3.4	13
122	Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. IOP Conference Series: Materials Science and Engineering, 2017, 271, 012058.	0.6	12
123	Torsional behaviour of steel fibre-reinforced oil palm shell concrete beams. Materials and Design, 2015, 87, 854-862.	7.0	11
124	Ductility behaviours of oil palm shell steel fibre-reinforced concrete beams under flexural loading. European Journal of Environmental and Civil Engineering, 2019, 23, 866-878.	2.1	11
125	Evaluation of crack healing potential of cement mortar incorporated with blue-green microalgae. Journal of Building Engineering, 2021, 44, 102958.	3.4	11
126	High strength oil palm shell concrete beams reinforced with steel fibres. Materiales De Construccion, 2017, 67, 142.	0.7	11

#	Article	IF	CITATIONS
127	Sustainable palm oil fuel ash mortar used as partial adhesive replacement in flexurally strengthened RC beams. Construction and Building Materials, 2019, 226, 507-523.	7.2	9
128	Study on the use of lightweight expanded perlite and vermiculite aggregates in blended cement mortars. European Journal of Environmental and Civil Engineering, 2020, , 1-20.	2.1	9
129	Relationship between microstructure and performance of polypropylene fibre reinforced cement composites subjected to elevated temperature. European Journal of Environmental and Civil Engineering, 2022, 26, 1792-1806.	2.1	9
130	Flexural Performance of RC Beams Strengthened with Externally-Side Bonded Reinforcement (E-SBR) Technique Using CFRP Composites. Materials, 2021, 14, 2809.	2.9	9
131	Influence of mineral admixtures on the residual mechanical properties and durability characteristics of self-compacting concrete subjected to high temperature. Australian Journal of Civil Engineering, 2022, 20, 244-260.	1.6	9
132	Enunciation of size effect of sustainable palm oil clinker sand on the characteristics of cement and geopolymer mortars. Journal of Building Engineering, 2021, 44, 103335.	3.4	8
133	Densification of copper oxide doped alumina toughened zirconia by conventional sintering. Ceramics International, 2022, 48, 6287-6293.	4.8	8
134	Enunciation of embryonic palm oil clinker based geopolymer concrete and its engineering properties. Construction and Building Materials, 2022, 318, 125975.	7.2	8
135	Development of lightweight concrete using industrial waste material, palm kernel shell as lightweight aggregate and its properties. , 2010, , .		7
136	Volume based design approach for sustainable palm oil clinker as whole replacement for conventional sand in mortar. Journal of Building Engineering, 2020, 32, 101660.	3.4	7
137	Performance evaluation of cellular lightweight concrete using palm oil industrial waste as cement and fine aggregate replacement materials. Materials Today: Proceedings, 2022, 52, 902-910.	1.8	7
138	Towards sustainable construction through the application of low carbon footprint products. Materials Today: Proceedings, 2022, 52, 873-881.	1.8	7
139	Waste press mud in enhancing the performance of glass powder blended cement. Construction and Building Materials, 2021, 313, 125469.	7.2	7
140	Influence of palm oil clinker powder on the fresh and mechanical properties of masonry mortars. IOP Conference Series: Materials Science and Engineering, 2018, 431, 082002.	0.6	6
141	Behaviour of fibre-reinforced cementitious composite containing high-volume fly ash at elevated temperatures. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	1.3	6
142	Simulating Intermediate Crack Debonding on RC Beams Strengthened with Hybrid Methods. Latin American Journal of Solids and Structures, 2018, 15, .	1.0	6
143	Combination Effect of Limestone Filler and Slag on Delayed Ettringite Formation in Heat-Cured Mortar. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	6
144	Chemo-physico-mechanical characteristics of high-strength alkali-activated mortar containing non-traditional supplementary cementitious materials. Journal of Building Engineering, 2021, 44, 103368.	3.4	6

#	Article	IF	CITATIONS
145	The Effect of Palm Oil Fuel Ash as a Cementreplacement Material on Self-Compacting Concrete. Applied Mechanics and Materials, 0, 567, 529-534.	0.2	5
146	Flexural Behaviour of Concrete Beams Bonded with Wire Mesh-Epoxy Composite. Applied Mechanics and Materials, 0, 567, 411-416.	0.2	5
147	Effect of bonding materials on the flexural improvement in RC beams strengthened with SNSM technique using GFRP bars. Journal of Building Engineering, 2020, 32, 101777.	3.4	5
148	Valorization of industrial byproducts and wastes as sustainable construction materials. , 2022, , 23-43.		4
149	Parametric study for concrete cover separation failure of retrofitted SNSM strengthened RC beams. Mechanics of Advanced Materials and Structures, 2020, 27, 481-492.	2.6	3
150	Performance Evaluation of Engineering Properties, Radiation Shielding, and Sustainability of Hollow Masonry Blocks Produced Using a High Volume of Industrial By-Products. Journal of Materials in Civil Engineering, 2021, 33, 04021003.	2.9	3
151	Structural performance of masonry prisms, wallettes and walls containing high volume of industrial by-products – Sustainable housing perspective. Construction and Building Materials, 2021, 303, 124439.	7.2	3
152	Effect of binder content and water-binder ratio in mortar developed using partial replacement of cement with palm oil clinker powder. IOP Conference Series: Materials Science and Engineering, 2018, 431, 082007.	0.6	2
153	Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 2022, 61, 512-516.	1.8	2
154	The Potential of Geopolymer in Development of Green Coating Materials: A Review. Arabian Journal for Science and Engineering, 2022, 47, 12289-12299.	3.0	2
155	Finite element analysis of rectangular reinforced concrete columns wrapped with FRP composites. IOP Conference Series: Materials Science and Engineering, 2018, 431, 072005.	0.6	1
156	COMBINING EBR CFRP SHEET WITH PRESTRESSED NSM STEEL STRANDS TO ENHANCE THE STRUCTURAL BEHAVIOR OF PRESTRESSED CONCRETE BEAMS. Journal of Civil Engineering and Management, 2021, 27, 637-650.	3.5	1
157	Compressive Behaviour of Polyarcylonitrile Fibre Reinforced Lightweight Aggregate Concrete Composite. Advanced Materials Research, 2015, 1115, 188-191.	0.3	Ο
158	Novel masonry grout incorporating high volumes of industrial by-products: microstructure characteristics and pursuance of durability properties. Architecture, Structures and Construction, 2021, 1, 125-142.	1.5	0
159	Low Carbon Geopolymer Hollow Block—Mix Design, Casting and Strength Comparison with OPC Hollow Block. Lecture Notes in Civil Engineering, 2020, , 959-971.	0.4	Ο
160	Eco-Friendly Masonry Products for Affordable Housing—Perspective of Positive Social Impact. , 2021, , 1-11.		0
161	High calcium fly ash geopolymer for application in textile reinforced mortar. AIP Conference Proceedings, 2021, , .	0.4	0
162	Enunciation of lightweight and self-compacting concretes using non-conventional materials. , 2022, , 45-62.		0

10