Hong-Ping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano, 2017, 11, 2561-2574.	7.3	749
2	Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials, 2017, 9, e372-e372.	3.8	441
3	Polydopamine Nanoparticles Modulating Stimuli-Responsive PNIPAM Hydrogels with Cell/Tissue Adhesiveness. ACS Applied Materials & Interfaces, 2016, 8, 29088-29100.	4.0	227
4	Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 28015-28026.	4.0	227
5	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	10.2	200
6	Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 36218-36228.	4.0	181
7	Mussel-Inspired Electroactive and Antioxidative Scaffolds with Incorporation of Polydopamine-Reduced Graphene Oxide for Enhancing Skin Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 7703-7714.	4.0	172
8	DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. Applied Surface Science, 2014, 317, 511-516.	3.1	135
9	Flexible, Free-Standing TiO ₂ –Graphene–Polypyrrole Composite Films as Electrodes for Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 3903-3910.	1.5	126
10	Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets. Applied Surface Science, 2013, 283, 559-565.	3.1	113
11	Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 1707-1717.	4.0	113
12	A Musselâ€Inspired Persistent ROSâ€Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemicalâ€Driven In Situ Nanoassembly. Small, 2019, 15, e1805440.	5.2	95
13	Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets. International Journal of Hydrogen Energy, 2013, 38, 14269-14275.	3.8	92
14	Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomaterialia, 2009, 5, 1169-1181.	4.1	89
15	Bioadhesive Microporous Architectures by Self-Assembling Polydopamine Microcapsules for Biomedical Applications. Chemistry of Materials, 2015, 27, 848-856.	3.2	81
16	Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Applied Surface Science, 2018, 455, 1116-1122.	3.1	71
17	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
18	Biodegradable carboxymethyl inulin as a scale inhibitor for calcite crystal growth: Molecular level understanding. Desalination, 2016, 381, 1-7.	4.0	59

#	Article	IF	CITATIONS
19	Proteinâ€Affinitive Polydopamine Nanoparticles as an Efficient Surface Modification Strategy for Versatile Porous Scaffolds Enhancing Tissue Regeneration. Particle and Particle Systems Characterization, 2016, 33, 89-100.	1.2	56
20	DFT Study of the Adsorption of Aspartic Acid on Pure, N-Doped, and Ca-Doped Rutile (110) Surfaces. Journal of Physical Chemistry C, 2011, 115, 18572-18581.	1.5	53
21	Doped phosphorene for hydrogen capture: A DFT study. Applied Surface Science, 2018, 433, 249-255.	3.1	48
22	Carboxylmethyl konjac glucomannan conjugated polydopamine composites for Pb(II) removal. Carbohydrate Polymers, 2017, 162, 62-70.	5.1	47
23	Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging. Chemosphere, 2022, 286, 131736.	4.2	46
24	Understanding interfacial interactions of polydopamine and glass fiber and their enhancement mechanisms in epoxy-based laminates. Composites Part A: Applied Science and Manufacturing, 2019, 116, 62-71.	3.8	45
25	Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application. Journal of Materials Science, 2018, 53, 14506-14524.	1.7	41
26	Computer simulation of biomolecule–biomaterial interactions at surfaces and interfaces. Biomedical Materials (Bristol), 2015, 10, 032001.	1.7	40
27	Laserâ€lgnited Relayâ€Dominoâ€Like Reactions in Graphene Oxide/CLâ€20 Films for Highâ€Temperature Pulse Preparation of Biâ€Layered Photothermal Membranes. Small, 2019, 15, e1900338.	5.2	40
28	Adsorption behavior of CO2 on pristine and doped phosphorenes: A dispersion corrected DFT study. Journal of CO2 Utilization, 2018, 24, 463-470.	3.3	39
29	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure. Small, 2021, 17, e2100296.	5.2	38
30	Effects of aqueous environment and surface defects on Argâ€Clyâ€Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation. Journal of Biomedical Materials Research - Part A, 2011, 96A, 466-476.	2.1	37
31	An electrochemical sensor based on iron(<scp>ii</scp> , <scp>iii</scp>)@graphene oxide@molecularly imprinted polymer nanoparticles for interleukin-8 detection in saliva. Analytical Methods, 2015, 7, 7784-7791.	1.3	34
32	Hexagonal hydroxyapatite formation on TiO2 nanotubes under urea modulation. CrystEngComm, 2011, 13, 3741.	1.3	29
33	Branched Sulfonated Polyimide/Sulfonated Methylcellulose Composite Membranes with Remarkable Proton Conductivity and Selectivity for Vanadium Redox Flow Batteries. ChemElectroChem, 2020, 7, 937-945.	1.7	28
34	Strain engineering of selective chemical adsorption on monolayer black phosphorous. Applied Surface Science, 2020, 503, 144033.	3.1	25
35	Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring. Journal of Molecular Graphics and Modelling, 2015, 61, 224-230.	1.3	24
36	Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Scientific Reports, 2018, 8, 4412.	1.6	24

#	Article	IF	CITATIONS
37	Efficient extraction of U(VI) from uranium enrichment process wastewater by amine-aminophosphonate-modified polyacrylonitrile fibers. Science of the Total Environment, 2022, 831, 154743.	3.9	24
38	Density functional theory study of interactions between glycine and TiO2/graphene nanocomposites. Chemical Physics Letters, 2014, 599, 86-91.	1.2	23
39	The molecular understanding of interfacial interactions of functionalized graphene and chitosan. Applied Surface Science, 2016, 360, 715-721.	3.1	23
40	Polycaprolactone/chitosan blends: Simulation and experimental design. Materials and Design, 2016, 90, 396-402.	3.3	23
41	Screw dislocation induced phonon transport suppression in SiGe superlattices. Physical Review B, 2019, 100, .	1.1	23
42	Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal, 2019, 119, 114-119.	2.6	22
43	Adsorption and dissociation behavior of water on pristine and defected calcite {1 0 4} surfaces: A DFT study. Applied Surface Science, 2021, 556, 149777.	3.1	22
44	Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: A DFT study. Chemosphere, 2017, 185, 509-517.	4.2	21
45	Crosslinked carbon nanofiber films with hierarchical pores as flexible electrodes for high performance supercapacitors. Materials and Design, 2018, 141, 17-25.	3.3	21
46	Fluorine ontaining Branched Sulfonated Polyimide Membrane for Vanadium Redox Flow Battery Applications. ChemElectroChem, 2018, 5, 3695-3707.	1.7	21
47	Sulfonated polyimide/chitosan composite membranes for a vanadium redox flow battery: influence of the sulfonated polyimide. Polymer Journal, 2016, 48, 905-918.	1.3	19
48	Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials. Materials Chemistry Frontiers, 2017, 1, 1156-1164.	3.2	18
49	Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption. Materials Science and Engineering C, 2020, 110, 110718.	3.8	18
50	Molecular dynamics simulation of RGD peptide adsorption on titanium oxide surfaces. Journal of Materials Science: Materials in Medicine, 2008, 19, 3437-3441.	1.7	17
51	Adsorption of 2,3,7,8-tetrochlorodibenzo-p-dioxins on intrinsic, defected, and Ti (N, Ag) doped graphene: a DFT study. Journal of Molecular Modeling, 2014, 20, 2238.	0.8	15
52	Regulating the effect of element doping on the CO2 capture performance of kaolinite: A density functional theory study. Applied Surface Science, 2020, 512, 145642.	3.1	15
53	Chitosan/graphene complex membrane for polymer electrolyte membrane fuel cell: A molecular dynamics simulation study. International Journal of Hydrogen Energy, 2020, 45, 25960-25969.	3.8	15
54	Molybdenum Oxide Nanosheet-Supported Ferrous Ion Artificial Peroxidase for Visual Colorimetric Detection of Triacetone Triperoxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 18985-18991.	3.2	13

#	Article	IF	CITATIONS
55	SO2 adsorption and conversion on pristine and defected calcite {1 0 4} surface: A density functional theory study. Applied Surface Science, 2022, 596, 153575.	3.1	11
56	Interaction Behaviors of Fibrinopeptide-A and Graphene with Different Functional Groups: A Molecular Dynamics Simulation Approach. Journal of Physical Chemistry B, 2017, 121, 7907-7915.	1.2	10
57	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting Highâ€Efficiency Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2019, 25, 9670-9677.	1.7	10
58	Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation. Science China Materials, 2020, 63, 842-850.	3.5	10
59	Electrospun Cu ₂ ZnSnS ₄ microfibers with strong (112) preferred orientation: fabrication and characterization. RSC Advances, 2015, 5, 15749-15755.	1.7	9
60	CO ₂ reduction to CH ₄ on Cu-doped phosphorene: a first-principles study. Nanoscale, 2021, 13, 20541-20549.	2.8	9
61	Effects of O-deficiency on the interaction between rutile and Arg: A density functional theory study. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 61, 83-89.	1.3	7
62	Photocatalytic and antibacterial properties of copper hydroxyphosphate with hierarchical superstructures synthesized by a hydrothermal method. Materials Chemistry and Physics, 2018, 206, 130-135.	2.0	7
63	Breathable, Moisturizing, Anti-Oxidation SSD-PG-PVA/KGM Fibrous Membranes for Accelerating Diabetic Wound Tissue Regeneration. ACS Applied Bio Materials, 2022, 5, 2894-2901.	2.3	7
64	Outâ€ofâ€Cell Oxygen Diffusivity Evaluation in Lithium–Air Batteries. ChemElectroChem, 2014, 1, 2052-2057.	1.7	6
65	Super-Paramagnetic Nanoparticles by Surface Imprinting on Graphene Oxide Modified Iron (II, III) with Application for the Determination of Ovalbumin by Absorption Spectroscopy. Analytical Letters, 2015, 48, 2463-2481.	1.0	6
66	Cost effective biochar gels with super capabilities for heavy metal removal. RSC Advances, 2016, 6, 75430-75439.	1.7	6
67	Exploring adsorption mechanism of glyphosate on pristine and elemental doped graphene. Chemical Physics Letters, 2021, 779, 138849.	1.2	6
68	Facile preparation of high-strength α-CaSO4·0.5H2O regulated by maleic acid from phosphogypsum: experimental and molecular dynamics simulation studies. SN Applied Sciences, 2020, 2, 1.	1.5	5
69	Atomistic understanding of interfacial interactions between bone morphogenetic protein-7 and graphene with different oxidation degrees. Materials Chemistry Frontiers, 2019, 3, 1900-1908.	3.2	4
70	Modulating the interactions between MgH2 and graphene using different dopants. Chemical Physics Letters, 2015, 623, 82-88.	1.2	3
71	Study on early hydration of gypsum-based materials containing different chemical admixtures by isothermal calorimetry and oscillation rheology. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	3
72	Mussel Inspired Modification of Rubber Crumbs for Improved Interfacial Adhesion in Rubber Cement Mortar. Applied Composite Materials, 2021, 28, 1767-1780.	1.3	3

#	Article	IF	CITATIONS
73	Konjac Glucomannan Induced Retarding Effects on the Early Hydration of Cement. Polymers, 2022, 14, 1064.	2.0	3
74	Surface Plasmon Resonanceâ€based Inhibitive Immunoassay Coupled with Dummy Template Molecularly Imprinted Polymer Solid Phase Extraction for Onâ€line Analysis of Trace Clenbuterol. Journal of the Chinese Chemical Society, 2014, 61, 1357-1364.	0.8	2
75	Graphene-based materials and their potential applications. , 2017, , 267-287.		2
76	Interactions between typical functional groups of soil organic matter and mica (001) surface: A DFT study. Applied Clay Science, 2022, 216, 106374.	2.6	2
77	A hybrid 3D spatial data structure for the integration of aboveground, ground and underground objects. , 2010, , .		1
78	Significantly Raised Visibleâ€Light Photocatalytic H ₂ Evolution on a 2D/2D ReS ₂ /In ₂ ZnS ₄ van der Waals Heterostructure (Small 32/2021). Small, 2021, 17, 2170168.	5.2	1
79	Stress Distribution in Microregion of Core–Shell Structure Lightweight Aggregate Concrete. Buildings, 2021, 11, 540.	1.4	1
80	On the Grid-Enabled Geospatial Information Workflow. , 2009, , .		0
81	Lightâ€lgnited Combustion: Laserâ€lgnited Relayâ€Dominoâ€Like Reactions in Graphene Oxide/CLâ€20 Films for Highâ€Temperature Pulse Preparation of Biâ€Layered Photothermal Membranes (Small 20/2019). Small, 2019, 15, 1970107.	5.2	0
82	Interactions between stearic acid and calcite surfaces: Experimental and computer simulation studies. Biosurface and Biotribology, 2021, 7, 126-132.	0.6	0