Subhas Khajanchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522142/publications.pdf

Version: 2024-02-01

201674 265206 2,471 45 27 42 citations h-index g-index papers 47 47 47 1135 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling and forecasting the COVID-19 pandemic in India. Chaos, Solitons and Fractals, 2020, 139, 110049.	5.1	340
2	A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos, Solitons and Fractals, 2020, 140, 110173.	5.1	192
3	Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India. Chaos, 2020, 30, 071101.	2.5	124
4	Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. Journal of Applied Mathematics and Computing, 2022, 68, 19-44.	2.5	101
5	Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes. Mathematics and Computers in Simulation, 2021, 180, 354-378.	4.4	91
6	The influence of time delay in a chaotic cancer model. Chaos, 2018, 28, 103101.	2.5	87
7	Mathematical modeling of the COVID-19 pandemic with intervention strategies. Results in Physics, 2021, 25, 104285.	4.1	85
8	Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecological Complexity, 2020, 42, 100826.	2.9	78
9	A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure. PLoS ONE, 2015, 10, e0123611.	2.5	74
10	Stability and bifurcation analysis of delay induced tumor immune interaction model. Applied Mathematics and Computation, 2014, 248, 652-671.	2.2	70
11	Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A: Statistical Mechanics and Its Applications, 2018, 497, 52-71.	2.6	70
12	Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function. Applied Mathematics and Computation, 2017, 302, 122-143.	2.2	67
13	How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment?. BioSystems, 2017, 158, 17-30.	2.0	66
14	Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. European Physical Journal Plus, 2021, 136, 994.	2.6	63
15	Dynamic behavior of a Beddington–DeAngelis type stage structured predator–prey model. Applied Mathematics and Computation, 2014, 244, 344-360.	2.2	57
16	Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180-205.	2.2	57
17	The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Applied Mathematics and Computation, 2020, 366, 124732.	2.2	54
18	Role of constant prey refuge on stage structure predator–prey model with ratio dependent functional response. Applied Mathematics and Computation, 2017, 314, 193-198.	2.2	52

#	Article	IF	CITATIONS
19	The combined effects of optimal control in cancer remission. Applied Mathematics and Computation, 2015, 271, 375-388.	2.2	49
20	Bifurcation analysis of a delayed mathematical model for tumor growth. Chaos, Solitons and Fractals, 2015, 77, 264-276.	5.1	48
21	Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction. Biophysical Reviews and Letters, 2017, 12, 187-208.	0.8	48
22	Transmission dynamics of tuberculosis with multiple re-infections. Chaos, Solitons and Fractals, 2020, 130, 109450.	5.1	45
23	Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak. Nonlinear Dynamics, 2022, 109, 177-202.	5.2	44
24	Stability Analysis of a Mathematical Model for Glioma-Immune Interaction under Optimal Therapy. International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 20, 269-285.	1.0	39
25	Quantifying the role of immunotherapeutic drug T11 target structure in progression of malignant gliomas: Mathematical modeling and dynamical perspective. Mathematical Biosciences, 2017, 289, 69-77.	1.9	38
26	Chaotic dynamics of a delayed tumor–immune interaction model. International Journal of Biomathematics, 2020, 13, 2050009.	2.9	37
27	Modeling the dynamics of COVID-19 pandemic with implementation of intervention strategies. European Physical Journal Plus, 2022, 137, 129.	2.6	34
28	Modeling the dynamics of glioma-immune surveillance. Chaos, Solitons and Fractals, 2018, 114, 108-118.	5.1	32
29	Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator. Mathematical Biosciences, 2018, 302, 116-130.	1.9	27
30	A STRATEGY OF OPTIMAL EFFICACY OF T11 TARGET STRUCTURE IN THE TREATMENT OF BRAIN TUMOR. Journal of Biological Systems, 2019, 27, 225-255.	1.4	26
31	Dynamics of algae blooming: effects of budget allocation and time delay. Nonlinear Dynamics, 2020, 100, 1779-1807.	5.2	24
32	Dynamics of an HTLV-I infection model with delayed CTLs immune response. Applied Mathematics and Computation, 2022, 430, 127206.	2.2	22
33	Is the allee effect relevant to stochastic cancer model?. Journal of Applied Mathematics and Computing, 2022, 68, 2293-2315.	2.5	21
34	Exploring the dynamics of a tumor-immune interplay with time delay. AEJ - Alexandria Engineering Journal, 2021, 60, 4875-4888.	6.4	20
35	Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. Journal of Applied Mathematics and Computing, 2023, 69, 171-199.	2.5	20
36	Rich Dynamics of a Predator-Prey System with Different Kinds of Functional Responses. Complexity, 2020, 2020, 1-19.	1.6	19

#	Article	IF	CITATIONS
37	The impact of distributed time delay in a tumor-immune interaction system. Chaos, Solitons and Fractals, 2021, 142, 110483.	5.1	19
38	Spatiotemporal dynamics of a glioma immune interaction model. Scientific Reports, 2021, 11, 22385.	3.3	18
39	Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Physica Scripta, 2022, 97, 085214.	2.5	18
40	The impact of immunotherapy on a glioma immune interaction model. Chaos, Solitons and Fractals, 2021, 152, 111346.	5.1	14
41	A Delayed Eco-Epidemiological Model with Weak Allee Effect and Disease in Prey. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	10
42	BIFURCATIONS AND OSCILLATORY DYNAMICS IN A TUMOR IMMUNE INTERACTION MODEL. , 2016, , .		8
43	Influence of multiple re-infections in tuberculosis transmission dynamics: A Mathematical Approach. , 2019, , .		6
44	A mathematical model to restore water quality in urban lakes using Phoslock. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3143.	0.9	5
45	Impact of awareness program on diabetes mellitus described by fractional-order model solving by homotopy analysis method. Ricerche Di Matematica, 0, , .	1.0	5