Jennifer R Cochran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522084/publications.pdf

Version: 2024-02-01

82 papers 5,089 citations

94269 37 h-index 98622 67 g-index

87 all docs

87 docs citations

times ranked

87

8335 citing authors

#	Article	IF	Citations
1	Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chemical Biology, 2022, 29, 451-462.e8.	2.5	14
2	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	15.2	105
3	Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Science Advances, 2022, 8, eabn8264.	4.7	80
4	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	13.5	88
5	Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nature Communications, 2022, 13, 2766.	5. 8	20
6	Identification of N-Terminally Diversified GLP-1R Agonists Using Saturation Mutagenesis and Chemical Design. ACS Chemical Biology, 2021, 16, 58-66.	1.6	5
7	Neutralizing antibodies targeting the SARSâ€CoVâ€2 receptor binding domain isolated from a naÃ⁻ve human antibody library. Protein Science, 2021, 30, 716-727.	3.1	16
8	LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17, 937-946.	3.9	211
9	An engineered ligand trap inhibits leukemia inhibitory factor as pancreatic cancer treatment strategy. Communications Biology, 2021, 4, 452.	2.0	15
10	Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro-Oncology, 2021, 23, 2042-2053.	0.6	37
11	Use of Outpatient-Derived COVID-19 Convalescent Plasma in COVID-19 Patients Before Seroconversion. Frontiers in Immunology, 2021, 12, 739037.	2.2	3
12	PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2020, 80, 4731-4740.	0.4	24
13	Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nature Methods, 2020, 17, 852-860.	9.0	123
14	An engineered antibody binds a distinct epitope and is a potent inhibitor of murine and human VISTA. Scientific Reports, 2020, 10, 15171.	1.6	33
15	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	5.6	404
16	Engineering a potent receptor superagonist or antagonist from a novel IL-6 family cytokine ligand. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14110-14118.	3.3	17
17	Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine, 2020, 127, 154974.	1.4	26
18	CD52 Is Elevated on B cells of SLE Patients and Regulates B Cell Function. Frontiers in Immunology, 2020, 11, 626820.	2.2	15

#	Article	IF	CITATIONS
19	Structural Basis of the Differential Binding of Engineered Knottins to Integrins $\hat{l}\pm V\hat{l}^2$ 3 and $\hat{l}\pm 5\hat{l}^2$ 1. Structure, 2019, 27, 1443-1451.e6.	1.6	12
20	Antitumor activity of an engineered decoy receptor targeting CLCF1â€"CNTFR signaling in lung adenocarcinoma. Nature Medicine, 2019, 25, 1783-1795.	15.2	43
21	Structure and Functional Binding Epitope of V-domain Ig Suppressor of T Cell Activation. Cell Reports, 2019, 28, 2509-2516.e5.	2.9	61
22	Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. Journal of Biological Chemistry, 2018, 293, 4969-4980.	1.6	6
23	Development of a Protease Biosensor Based on a Dimerization-Dependent Red Fluorescent Protein. ACS Chemical Biology, 2018, 13, 66-72.	1.6	17
24	Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. Journal of Experimental Medicine, 2017, 214, 1679-1690.	4.2	41
25	High-throughput screening technologies for enzyme engineering. Current Opinion in Biotechnology, 2017, 48, 196-202.	3.3	99
26	Engineered ligandâ€based VEGFR antagonists with increased receptor binding affinity more effectively inhibit angiogenesis. Bioengineering and Translational Medicine, 2017, 2, 81-91.	3.9	6
27	A novel proteinâ€engineered hepatocyte growth factor analog released via a shearâ€thinning injectable hydrogel enhances postâ€infarction ventricular function. Biotechnology and Bioengineering, 2017, 114, 2379-2389.	1.7	27
28	Targeting ligand–receptor interactions for development of cancer therapeutics. Current Opinion in Chemical Biology, 2017, 38, 62-69.	2.8	32
29	Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnology Journal, 2017, 12, 1600696.	1.8	26
30	Engineering High Affinity Protein–Protein Interactions Using a High-Throughput Microcapillary Array Platform. ACS Chemical Biology, 2017, 12, 336-341.	1.6	14
31	Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry, 2017, 56, 5720-5725.	1.2	10
32	Integrinâ€Targeting Knottin Peptide–Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angewandte Chemie, 2016, 128, 10048-10051.	1.6	6
33	Integrin‶argeting Knottin Peptide–Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation. Angewandte Chemie - International Edition, 2016, 55, 9894-9897.	7.2	61
34	Innentitelbild: Integrin-Targeting Knottin Peptide-Drug Conjugates Are Potent Inhibitors of Tumor Cell Proliferation (Angew. Chem. 34/2016). Angewandte Chemie, 2016, 128, 9950-9950.	1.6	0
35	Targeted Drug Delivery with an Integrin-Binding Knottin–Fc–MMAF Conjugate Produced by Cell-Free Protein Synthesis. Molecular Cancer Therapeutics, 2016, 15, 1291-1300.	1.9	27
36	Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Current Opinion in Chemical Biology, 2016, 34, 143-150.	2.8	96

#	Article	IF	Citations
37	Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends in Pharmacological Sciences, 2016, 37, 993-1008.	4.0	156
38	Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature Medicine, 2016, 22, 1402-1410.	15.2	437
39	In Vivo Site-Specific Protein Tagging with Diverse Amines Using an Engineered Sortase Variant. Journal of the American Chemical Society, 2016, 138, 7496-7499.	6.6	77
40	High-throughput analysis and protein engineering using microcapillary arrays. Nature Chemical Biology, 2016, 12, 76-81.	3.9	95
41	Degradable Acetalated Dextran Microparticles for Tunable Release of an Engineered Hepatocyte Growth Factor Fragment. ACS Biomaterials Science and Engineering, 2016, 2, 197-204.	2.6	26
42	Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 2016, 30, 1-12.	4.1	273
43	Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. Journal of Clinical Investigation, 2016, 127, 183-198.	3.9	86
44	Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials, 2015, 45, 56-63.	5.7	90
45	Applications of Yeast Surface Display for Protein Engineering. Methods in Molecular Biology, 2015, 1319, 155-175.	0.4	170
46	A Chemically Cross-Linked Knottin Dimer Binds Integrins with Picomolar Affinity and Inhibits Tumor Cell Migration and Proliferation. Journal of the American Chemical Society, 2015, 137, 6-9.	6.6	63
47	An engineered dimeric fragment of hepatocyte growth factor is a potent câ€MET agonist. FEBS Letters, 2014, 588, 4831-4837.	1.3	23
48	An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis. Nature Chemical Biology, 2014, 10, 977-983.	3.9	117
49	Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Review of Proteomics, 2014, 11, 561-572.	1.3	39
50	Engineering Multivalent and Multispecific Protein Therapeutics. , 2014, , 365-396.		4
51	A Bioengineered Peptide That Localizes To And Illuminates Medulloblastoma: A New Tool With Potential For Fluorescence-Guided Surgical Resection. Cureus, 2014, 6, .	0.2	2
52	A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids, 2013, 44, 673-681.	1.2	10
53	Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics. Current Opinion in Biotechnology, 2013, 24, 1072-1077.	3.3	36
54	Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14598-14603.	3.3	67

#	Article	IF	CITATIONS
55	Engineering Agatoxin, a Cystine-Knot Peptide from Spider Venom, as a Molecular Probe for In Vivo Tumor Imaging. PLoS ONE, 2013, 8, e60498.	1.1	45
56	<mml:math< p=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>I</mml:mtext><mml:mrow><mml:mtext>111 Cystine-Knot Peptides Based on the Agouti-Related Protein for Targeting Tumor Angiogenesis. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.</mml:mtext></mml:mrow></mml:math<>	ç/mml:mt	ext>
57	Knottins: disulfide-bonded therapeutic and diagnostic peptides. Drug Discovery Today: Technologies, 2012, 9, e3-e11.	4.0	72
58	Engineering Knottins as Novel Binding Agents. Methods in Enzymology, 2012, 503, 223-251.	0.4	46
59	Discovery of Improved EGF Agonists Using a Novel In Vitro Screening Platform. Journal of Molecular Biology, 2011, 413, 406-415.	2.0	9
60	Cystine-knot peptides engineered with specificities for $\hat{l}\pm llb\hat{l}^23$ or $\hat{l}\pm llb\hat{l}^23$ and $\hat{l}\pm v\hat{l}^23$ integrins are potent inhibitors of platelet aggregation. Journal of Molecular Recognition, 2011, 24, 127-135.	1.1	39
61	PET Imaging of Integrin Positive Tumors Using ¹⁸ F Labeled Knottin Peptides. Theranostics, 2011, 1, 403-412.	4.6	30
62	Functional Mutation of Multiple Solvent-Exposed Loops in the Ecballium elaterium Trypsin Inhibitor-II Cystine Knot Miniprotein. PLoS ONE, 2011, 6, e16112.	1.1	37
63	Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation. FEBS Letters, 2011, 585, 1135-1139.	1.3	18
64	Preliminary evaluation of 177Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 613-622.	3.3	31
65	Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13035-13040.	3.3	53
66	Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and $\langle i \rangle \hat{1} \pm \langle i \rangle \langle sub \rangle \langle i \rangle \hat{1}^2 + \langle sub $	3.3	53
67	Targeting of Cancer Cells Using Quantum Dot–Polypeptide Hybrid Assemblies That Function as Molecular Imaging Agents and Carrier Systems. Advanced Functional Materials, 2010, 20, 4091-4097.	7.8	25
68	Engineered Proteins Pull Double Duty. Science Translational Medicine, 2010, 2, 17ps5.	5.8	24
69	Evaluation of a $\langle sup \rangle 64 \langle sup \rangle Cu$ -Labeled Cystine-Knot Peptide Based on Agouti-Related Protein for PET of Tumors Expressing $\hat{l}_{sub} \langle sub \rangle \hat{l}_{sub} \langle sub \rangle \hat{l}_{sub} \rangle$ Integrin. Journal of Nuclear Medicine, 2010, 51, 251-258.	2.8	59
70	PET Imaging of Tumor Neovascularization in a Transgenic Mouse Model with a Novel 64Cu-DOTA-Knottin Peptide. Cancer Research, 2010, 70, 9022-9030.	0.4	43
71	Targeted Contrast-Enhanced Ultrasound Imaging of Tumor Angiogenesis with Contrast Microbubbles Conjugated to Integrin-Binding Knottin Peptides. Journal of Nuclear Medicine, 2010, 51, 433-440.	2.8	156
72	A Dual-Labeled Knottin Peptide for PET and Near-Infrared Fluorescence Imaging of Integrin Expression in Living Subjects. Bioconjugate Chemistry, 2010, 21, 436-444.	1.8	61

#	Article	IF	CITATIONS
73	Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnology and Genetic Engineering Reviews, 2010, 27, 57-94.	2.4	7
74	Interrogating and Predicting Tolerated Sequence Diversity in Protein Folds: Application to E. elaterium Trypsin Inhibitor-II Cystine-Knot Miniprotein. PLoS Computational Biology, 2009, 5, e1000499.	1.5	29
75	Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1 integrins with lowâ€nanomolar affinity. Proteins: Structure, Function and Bioinformatics, 2009, 77, 359-369.	1.5	147
76	An Engineered Knottin Peptide Labeled with ¹⁸ F for PET Imaging of Integrin Expression. Bioconjugate Chemistry, 2009, 20, 2342-2347.	1.8	45
77	Engineered Cystine-Knot Peptides that Bind $\hat{l}\pm\nu\hat{l}^2$ 3 Integrin with Antibody-Like Affinities. Journal of Molecular Biology, 2009, 385, 1064-1075.	2.0	117
78	Engineered Knottin Peptides: A New Class of Agents for Imaging Integrin Expression in Living Subjects. Cancer Research, 2009, 69, 2435-2442.	0.4	146
79	Cell Surface Display Systems For Protein Engineering. , 2009, , .		3
80	Developing therapeutic proteins by engineering ligand–receptor interactions. Trends in Biotechnology, 2008, 26, 498-505.	4.9	40
81	Improved mutants from directed evolution are biased to orthologous substitutions. Protein Engineering, Design and Selection, 2006, 19, 245-253.	1.0	57
82	Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. Journal of Immunological Methods, 2004, 287, 147-158.	0.6	90