Preetam Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522015/publications.pdf

Version: 2024-02-01

42

all docs

41 1,087 17
papers citations h-index

42

docs citations

h-index g-index

42 1224
times ranked citing authors

32

#	Article	IF	CITATIONS
1	Traditional and ayurvedic foods of Indian origin. Journal of Ethnic Foods, 2015, 2, 97-109.	1.9	116
2	Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology, 2018, 55, 4369-4383.	2.8	85
3	Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters, 2018, 16, 59-70.	16.2	83
4	Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packaging and Shelf Life, 2019, 21, 100380.	7.5	75
5	Delivery systems of antimicrobial compounds to food. Trends in Food Science and Technology, 2016, 57, 165-177.	15.1	71
6	Synthesis and characterization of tamarind kernel powder-based antimicrobial edible films loaded with geraniol. Food Packaging and Shelf Life, 2020, 26, 100562.	7.5	54
7	Multiple layers and conjugate materials for food emulsion stabilization. Critical Reviews in Food Science and Nutrition, 2018, 58, 877-892.	10.3	53
8	Novel food packaging materials including plant-based byproducts: A review. Trends in Food Science and Technology, 2021, 118, 471-489.	15.1	49
9	Development of Bigels Based on Stearic Acid–Rice Bran Oil Oleogels and Tamarind Gum Hydrogels for Controlled Delivery Applications. Journal of Surfactants and Detergents, 2018, 21, 17-29.	2.1	42
10	Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4â€Â°C. Food Control, 2020, 107, 106757.	5.5	42
11	Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice. Food Chemistry, 2017, 217, 155-162.	8.2	40
12	Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: Preparation, characterization, and application on tomato (Solanum lycopersicum) fruits. Food Hydrocolloids, 2022, 133, 107917.	10.7	32
13	Characterization of Tri-Phasic Edible Films from Chitosan, Guar Gum, and Whey Protein Isolate Loaded with Plant-Based Antimicrobial Compounds. Polymer-Plastics Technology and Materials, 2019, 58, 255-269.	1.3	30
14	Selected Applications of Chitosan Composites. International Journal of Molecular Sciences, 2021, 22, 10968.	4.1	25
15	Nano-inspired systems in food technology and packaging. Environmental Chemistry Letters, 2017, 15, 607-622.	16.2	24
16	Synthesis, characterization, and antimicrobial efficacy of composite films from guar gum/sago starch/whey protein isolate loaded with carvacrol, citral and carvacrol-citral mixture. Journal of Materials Science: Materials in Medicine, 2019, 30, 117.	3.6	24
17	Nanoencapsulation strategies for lipid-soluble vitamins. Chemical Papers, 2019, 73, 1-16.	2.2	19
18	Preparation and characterization of tamarind kernel powder/ZnO nanoparticle-based food packaging films. Industrial Crops and Products, 2022, 178, 114670.	5.2	19

#	Article	IF	Citations
19	Ultrasonication-assisted formation and characterization of geraniol and carvacrol-loaded emulsions for enhanced antimicrobial activity against food-borne pathogens. Chemical Papers, 2018, 72, 2659-2672.	2.2	18
20	Polysaccharide-Based Nanocomposites for Food Packaging Applications. Materials, 2021, 14, 5549.	2.9	18
21	Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin. Gels, 2021, 7, 226.	4.5	17
22	Fabrication and Characterization of Poly (vinyl alcohol) and Chitosan Oligosaccharide-Based Blend Films. Gels, 2021, 7, 55.	4.5	16
23	Synthesis and characterization of novel tamarind gum and rice bran oil-based emulgels for the ocular delivery of antibiotics. International Journal of Biological Macromolecules, 2020, 164, 1608-1620.	7.5	15
24	Oxidative stability and effect of stress factors on flaxseed oil-in-water emulsions stabilized by sodium caseinate–sodium alginate–chitosan interfacial membrane. Chemical Papers, 2018, 72, 1-14.	2.2	14
25	Preparation and characterization of cocoa butter and whey protein isolate based emulgels for pharmaceutical and probiotics delivery applications. Journal of Dispersion Science and Technology, 2020, 41, 426-440.	2.4	13
26	Preparation and characterization of novel tamarind gum-based hydrogels for antimicrobial drug delivery applications. Chemical Papers, 2018, 72, 2101-2113.	2.2	12
27	Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. Journal of Drug Delivery Science and Technology, 2020, 60, 102024.	3.0	10
28	Oleogels Based on Palmitic Acid and Safflower Oil: Novel Formulations for Ocular Drug Delivery of Voriconazole. European Journal of Lipid Science and Technology, 2020, 122, 1900288.	1.5	8
29	Nanoemulsions for Nutrient Delivery in Food. Sustainable Agriculture Reviews, 2017, , 81-121.	1.1	8
30	Biopolymerâ€based antimicrobial coatings for aquatic food products: A review. Journal of Food Processing and Preservation, 2022, 46, .	2.0	8
31	Nisin Adsorption in Colloidal Systems Formed with Phytoglycogen Octenyl Succinate. Food Biophysics, 2016, 11, 311-318.	3.0	7
32	Emulsion Stabilized with Starch Octenyl Succinate Prolongs Nisin Activity Against <i>Listeria Monocytogenes</i> in a Cantaloupe Juice Model. Journal of Food Science, 2016, 81, M2982-M2987.	3.1	7
33	Nanotechnology in Food Processing and Packaging. Sustainable Agriculture Reviews, 2016, , 185-227.	1.1	5
34	Neem seed oil and gum arabic-based oil-in-water emulsions as potential ocular drug delivery system. Journal of Dispersion Science and Technology, 2020, 41, 1911-1924.	2.4	5
35	Graphene Oxide Increases Corneal Permeation of Ciprofloxacin Hydrochloride from Oleogels: A Study with Cocoa Butter-Based Oleogels. Gels, 2020, 6, 43.	4.5	5
36	Biopolymer-based edible films and coatings for food applications. , 2021, , 81-107.		5

#	Article	IF	CITATIONS
37	Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polymer Bulletin, 2022, 79, 3253-3290.	3.3	5
38	Optical, mechanical, structural, and antimicrobial properties of tamarind kernel powder, halloysite, and cinnamaldehyde nanocomposite films. Journal of Food Process Engineering, 2022, 45, .	2.9	5
39	Oil-entrapped films. , 2020, , 425-444.		1
40	Kokum butter and rice bran oil-based oleogels as novel ocular drug delivery systems. , 2021, , 147-179.		1
41	Polysaccharide–oil complexes as edible films. , 2021, , 109-133.		1