List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521098/publications.pdf Version: 2024-02-01

		47006	30087
131	11,398	47	103
papers	citations	h-index	g-index
135	135	135	7438
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
2	Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41, 973-981.	2.1	1,072
3	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	12.6	843
4	Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 2017, 14, 632.	2.6	763
5	Asexual Sporulation in <i>Aspergillus nidulans</i> . Microbiology and Molecular Biology Reviews, 1998, 62, 35-54.	6.6	645
6	Regulation of Secondary Metabolism in Filamentous Fungi. Annual Review of Phytopathology, 2005, 43, 437-458.	7.8	454
7	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
8	Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology, 2012, 15, 669-677.	5.1	331
9	Conservation of structure and function of the aflatoxin regulatory geneaflR fromAspergillus nidulans andA. flavus. Current Genetics, 1996, 29, 549-555.	1.7	236
10	LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity. PLoS Genetics, 2010, 6, e1001226.	3.5	233
11	A Novel Regulator Couples Sporogenesis and Trehalose Biogenesis in Aspergillus nidulans. PLoS ONE, 2007, 2, e970.	2.5	215
12	The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Molecular Microbiology, 2001, 41, 299-309.	2.5	200
13	Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin. Genome Biology and Evolution, 2014, 6, 1620-1634.	2.5	179
14	FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Molecular Microbiology, 2010, 77, 1203-1219.	2.5	138
15	Upstream and Downstream Regulation of Asexual Development in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 1585-1595.	3.4	134
16	G-protein and cAMP-mediated signaling in aspergilli: A genomic perspective. Fungal Genetics and Biology, 2006, 43, 490-502.	2.1	131
17	The Velvet Family of Fungal Regulators Contains a DNA-Binding Domain Structurally Similar to NF-κB. PLoS Biology, 2013, 11, e1001750.	5.6	121
18	The Heterotrimeric G-Protein GanB(α)-SfaD(β)-GpgA(γ) Is a Carbon Source Sensor Involved in Early cAMP-Dependent Germination in Aspergillus nidulans. Genetics, 2005, 171, 71-80.	2.9	118

#	Article	IF	CITATIONS
19	Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gî±) signalling. Molecular Microbiology, 2004, 53, 529-540.	2.5	114
20	Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Advances in Applied Microbiology, 2017, 100, 161-202.	2.4	114
21	Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. Journal of Microbiology, 2006, 44, 145-54.	2.8	110
22	Regulation of Development in <i>Aspergillus nidulans</i> and <i>Aspergillus fumigatus</i> . Mycobiology, 2010, 38, 229.	1.7	108
23	The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Molecular Microbiology, 2004, 53, 1611-1623.	2.5	103
24	FluG-Dependent Asexual Development in Aspergillus nidulans Occurs via Derepression. Genetics, 2006, 172, 1535-1544.	2.9	102
25	The Role, Interaction and Regulation of the Velvet Regulator VelB in Aspergillus nidulans. PLoS ONE, 2012, 7, e45935.	2.5	101
26	AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology (United) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
27	A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Molecular Microbiology, 2004, 51, 1333-1345.	2.5	97
28	Basic-Zipper-Type Transcription Factor FlbB Controls Asexual Development in <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2008, 7, 38-48.	3.4	97
29	Characterization of the <i>velvet</i> regulators in <i><scp>A</scp>spergillus fumigatus</i> . Molecular Microbiology, 2012, 86, 937-953.	2.5	84
30	Growth and Developmental Control in the Model and Pathogenic Aspergilli. Eukaryotic Cell, 2006, 5, 1577-1584.	3.4	80
31	Differential Roles of the ChiB Chitinase in Autolysis and Cell Death of <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2009, 8, 738-746.	3.4	80
32	Negative regulation and developmental competence in Aspergillus. Scientific Reports, 2016, 6, 28874.	3.3	77
33	Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genetics and Biology, 2010, 47, 981-993.	2.1	72
34	NsdD Is a Key Repressor of Asexual Development in <i>Aspergillus nidulans</i> . Genetics, 2014, 197, 159-173.	2.9	71
35	VelC Positively Controls Sexual Development in Aspergillus nidulans. PLoS ONE, 2014, 9, e89883.	2.5	69
36	Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi. MBio, 2018, 9, .	4.1	68

#	Article	IF	CITATIONS
37	Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Current Opinion in Microbiology, 1998, 1, 674-677.	5.1	67
38	Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Scientific Reports, 2018, 8, 16871.	3.3	66
39	Multiple Roles of a Heterotrimeric G-Protein γ-Subunit in Governing Growth and Development of Aspergillus nidulans. Genetics, 2005, 171, 81-89.	2.9	64
40	Suppressor Mutations Bypass the Requirement of <i>fluG</i> for Asexual Sporulation and Sterigmatocystin Production in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1083-1093.	2.9	63
41	Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. Scientific Reports, 2016, 6, 33099.	3.3	61
42	Lipid Biosynthesis as an Antifungal Target. Journal of Fungi (Basel, Switzerland), 2018, 4, 50.	3.5	61
43	The Phosducin-Like Protein PhnA Is Required for Gî²Î³-Mediated Signaling for Vegetative Growth, Developmental Control, and Toxin Biosynthesis in Aspergillus nidulans. Eukaryotic Cell, 2006, 5, 400-410.	3.4	59
44	Bioremediation and microbial metabolism of benzo(a)pyrene. Molecular Microbiology, 2018, 109, 433-444.	2.5	59
45	Developmental regulators in Aspergillus fumigatus. Journal of Microbiology, 2016, 54, 223-231.	2.8	58
46	The pkaB Gene Encoding the Secondary Protein Kinase A Catalytic Subunit Has a Synthetic Lethal Interaction with pkaA and Plays Overlapping and Opposite Roles in Aspergillus nidulans. Eukaryotic Cell, 2005, 4, 1465-1476.	3.4	57
47	Aspergillus fumigatus <i>flbB</i> Encodes Two Basic Leucine Zipper Domain (bZIP) Proteins Required for Proper Asexual Development and Gliotoxin Production. Eukaryotic Cell, 2010, 9, 1711-1723.	3.4	48
48	WetA bridges cellular and chemical development in Aspergillus flavus. PLoS ONE, 2017, 12, e0179571.	2.5	48
49	Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens. PLoS ONE, 2015, 10, e0142100.	2.5	46
50	Core oxidative stress response in Aspergillus nidulans. BMC Genomics, 2015, 16, 478.	2.8	45
51	Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Current Genetics, 1997, 32, 218-224.	1.7	44
52	Extragenic Suppressors of Loss-of-Function Mutations in the Aspergillus FlbA Regulator of G-Protein Signaling Domain Protein. Genetics, 1999, 151, 97-105.	2.9	43
53	Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores. Scientific Reports, 2015, 5, 10199.	3.3	41
54	Velvet Regulators in Aspergillus spp Microbiology and Biotechnology Letters, 2016, 44, 409-419.	0.4	37

#	Article	IF	CITATIONS
55	The small molecular mass antifungal protein of <i>Penicillium chrysogenum</i> – a mechanism of action oriented review. Journal of Basic Microbiology, 2011, 51, 561-571.	3.3	35
56	Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran. RSC Advances, 2015, 5, 34327-34334.	3.6	34
57	Chemically functionalized silica gel with alkynyl terminated monolayers as an efficient new material for removal of mercury ions from water. Journal of Industrial and Engineering Chemistry, 2016, 35, 376-382.	5.8	32
58	Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS ONE, 2016, 11, e0161312.	2.5	32
59	Gâ€protein coupled receptorâ€mediated nutrient sensing and developmental control in <scp><i>A</i></scp> <i>spergillus nidulans</i> . Molecular Microbiology, 2015, 98, 420-439.	2.5	31
60	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	2.5	31
61	Characterization of the velvet regulators in Aspergillus flavus. Journal of Microbiology, 2018, 56, 893-901.	2.8	31
62	GÎ2Î3-mediated growth and developmental control in Aspergillus fumigatus. Current Genetics, 2009, 55, 631-641.	1.7	30
63	Multi-Copy Genetic Screen in Aspergillus nidulans. Methods in Molecular Biology, 2012, 944, 183-190.	0.9	29
64	Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores. MBio, 2021, 12, .	4.1	29
65	Characterization and regulated naproxen release of hydroxypropyl cyclosophoraose-pullulan microspheres. Journal of Industrial and Engineering Chemistry, 2017, 48, 108-118.	5.8	28
66	Similarities, variations, and evolution of cytochrome P450s in Streptomyces versus Mycobacterium. Scientific Reports, 2019, 9, 3962.	3.3	28
67	Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Current Genetics, 1996, 29, 549-555.	1.7	28
68	Gβ-Like CpcB Plays a Crucial Role for Growth and Development of Aspergillus nidulans and Aspergillus fumigatus. PLoS ONE, 2013, 8, e70355.	2.5	28
69	Genetic Control of Asexual Development in Aspergillus fumigatus. Advances in Applied Microbiology, 2015, 90, 93-107.	2.4	27
70	Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Scientific Reports, 2016, 6, 20523.	3.3	26
71	The Putative Guanine Nucleotide Exchange Factor RicA Mediates Upstream Signaling for Growth and Development in Aspergillus. Eukaryotic Cell, 2012, 11, 1399-1412.	3.4	25
72	The WOPR Domain Protein OsaA Orchestrates Development in Aspergillus nidulans. PLoS ONE, 2015, 10, e0137554.	2.5	25

#	Article	IF	CITATIONS
73	Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2015, 463, 428-433.	2.1	25
74	Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon. Carbohydrate Polymers, 2015, 133, 221-228.	10.2	25
75	The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS ONE, 2017, 12, e0177099.	2.5	25
76	Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Scientific Reports, 2015, 5, 11572.	3.3	24
77	Regulation of <i>Aspergillus</i> Conidiation. , 0, , 557-576.		23
78	Efficient Adsorption on Benzoyl and Stearoyl Cellulose to Remove Phenanthrene and Pyrene from Aqueous Solution. Polymers, 2018, 10, 1042.	4.5	22
79	Cytochrome P450 Monooxygenase-Mediated Metabolic Utilization of Benzo[a]Pyrene by Aspergillus Species. MBio, 2019, 10, .	4.1	22
80	Analysis of E.U. Rapid Alert System (RASFF) Notifications for Aflatoxins in Exported U.S. Food and Feed Products for 2010–2019. Toxins, 2021, 13, 90.	3.4	22
81	Upstream Regulation of Mycotoxin Biosynthesis. Advances in Applied Microbiology, 2014, 86, 251-278.	2.4	21
82	Comprehensive Analyses of Cytochrome P450 Monooxygenases and Secondary Metabolite Biosynthetic Gene Clusters in Cyanobacteria. International Journal of Molecular Sciences, 2020, 21, 656.	4.1	21
83	More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. International Journal of Molecular Sciences, 2020, 21, 4814.	4.1	20
84	The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans. Current Genetics, 2010, 56, 283-296.	1.7	19
85	Characteristics of a Regulator of G-Protein Signaling (RGS) rgsC in Aspergillus fumigatus. Frontiers in Microbiology, 2017, 8, 2058.	3.5	19
86	Comparative Analyses of Cytochrome P450s and Those Associated with Secondary Metabolism in Bacillus Species. International Journal of Molecular Sciences, 2018, 19, 3623.	4.1	19
87	Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks in <i>Aspergillus nidulans</i> . International Journal of Genomics, 2017, 2017, 1-14.	1.6	18
88	Characterization of the asexual developmental genes brlA and wetA in Monascus ruber M7. Fungal Genetics and Biology, 2021, 151, 103564.	2.1	18
89	Extracellular proteinase formation in carbon starving <i>Aspergillus nidulans</i> cultures – physiological function and regulation. Journal of Basic Microbiology, 2011, 51, 625-634.	3.3	17
90	Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus. Journal of Proteomics, 2013, 87, 40-52.	2.4	17

#	Article	IF	CITATIONS
91	High molecular weight genomic DNA mini-prep for filamentous fungi. Fungal Genetics and Biology, 2017, 104, 1-5.	2.1	17
92	Effects of Different G-Protein α-Subunits on Growth, Development and Secondary Metabolism of Monascus ruber M7. Frontiers in Microbiology, 2019, 10, 1555.	3.5	17
93	Heterotrimeric G-Protein Signalers and RGSs in Aspergillus fumigatus. Pathogens, 2020, 9, 902.	2.8	16
94	Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol. Carbohydrate Polymers, 2014, 106, 101-108.	10.2	15
95	Blooming of Unusual Cytochrome P450s by Tandem Duplication in the Pathogenic Fungus Conidiobolus coronatus. International Journal of Molecular Sciences, 2018, 19, 1711.	4.1	15
96	RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus. Scientific Reports, 2019, 9, 811.	3.3	15
97	The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Current Genetics, 2020, 66, 621-633.	1.7	15
98	The velvet Regulator VosA Governs Survival and Secondary Metabolism of Sexual Spores in Aspergillus nidulans. Genes, 2020, 11, 103.	2.4	15
99	A Liquid Chromatographic Method for Rapid and Sensitive Analysis of Aflatoxins in Laboratory Fungal Cultures. Toxins, 2020, 12, 93.	3.4	15
100	Characterization of the rax1 gene encoding a putative regulator of G protein signaling in Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2017, 487, 426-432.	2.1	13
101	The Novel Small Molecule STK899704 Promotes Senescence of the Human A549 NSCLC Cells by Inducing DNA Damage Responses and Cell Cycle Arrest. Frontiers in Pharmacology, 2018, 9, 163.	3.5	13
102	The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. Journal of Microbiology, 2019, 57, 893-899.	2.8	13
103	Cytochrome P450 Monooxygenase CYP139 Family Involved in the Synthesis of Secondary Metabolites in 824 Mycobacterial Species. International Journal of Molecular Sciences, 2019, 20, 2690.	4.1	13
104	The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus. MSphere, 2020, 5, .	2.9	13
105	Enhancing bio-availability of β-naphthoflavone by supramolecular complexation with 6,6′-thiobis(methylene)-β-cyclodextrin dimer. Carbohydrate Polymers, 2016, 151, 40-50.	10.2	12
106	Distribution and Diversity of Cytochrome P450 Monooxygenases in the Fungal Class Tremellomycetes. International Journal of Molecular Sciences, 2019, 20, 2889.	4.1	12
107	Antifungal activity of extracellular hydrolases produced by autolysing Aspergillus nidulans cultures. Journal of Microbiology, 2012, 50, 849-854.	2.8	10
108	RgsA Attenuates the PKA Signaling, Stress Response, and Virulence in the Human Opportunistic Pathogen Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 5628.	4.1	10

#	Article	lF	CITATIONS
109	Developmental Decisions in Aspergillus nidulans. , 2019, , 63-80.		10
110	AtfA-Independent Adaptation to the Toxic Heavy Metal Cadmium in Aspergillus nidulans. Microorganisms, 2021, 9, 1433.	3.6	10
111	Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus. International Journal of Molecular Sciences, 2021, 22, 3777.	4.1	9
112	Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G) Tj ETQqO) 0 rgBT /C £7	Overlock 10 Tf
113	Comparative Analysis, Structural Insights, and Substrate/Drug Interaction of CYP128A1 in Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2020, 21, 4816.	4.1	7
114	Increased Cd ²⁺ biosorption capability of <i>Aspergillus nidulans</i> elicited by <i>crpA</i> deletion. Journal of Basic Microbiology, 2020, 60, 574-584.	3.3	7
115	γ-Clutamyl transpeptidase (GgtA) of Aspergillus nidulans is not necessary for bulk degradation of glutathione. Archives of Microbiology, 2015, 197, 285-297.	2.2	6
116	Hydroxypropyl cyclic β-(1→2)-d-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons. Carbohydrate Research, 2015, 401, 82-88.	2.3	6
117	1 Molecular Biology of Asexual Sporulation in Filamentous Fungi. , 2016, , 3-19.		6
118	Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans. Scientific Reports, 2020, 10, 15075.	3.3	6
119	The DUG Pathway Governs Degradation of Intracellular Glutathione in Aspergillus nidulans. Applied and Environmental Microbiology, 2021, 87, .	3.1	6
120	The velvet-activated putative C6 transcription factor VadZ regulates development and sterigmatocystin production in Aspergillus nidulans. Fungal Biology, 2022, , .	2.5	5
121	Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biology, 2015, , 29-42.	0.6	4
122	Comparative analyses and structural insights of the novel cytochrome P450 fusion protein family CYP5619 in Oomycetes. Scientific Reports, 2018, 8, 6597.	3.3	4
123	The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans. Journal of Microbiology, 2021, 59, 746-752.	2.8	4
124	Cytochrome P450 monooxygenase analysis in free-living and symbiotic microalgae Coccomyxa sp. C-169 and Chlorella sp. NC64A. Algae, 2015, 30, 233-239.	2.3	4
125	Characterization of 260 Isolates of Aspergillus Section Flavi Obtained from Sesame Seeds in Punjab, Pakistan. Toxins, 2022, 14, 117.	3.4	4
126	Disturbance in biosynthesis of arachidonic acid impairs the sexual development of the onion blight pathogen Stemphylium eturmiunum. Current Genetics, 2019, 65, 759-771.	1.7	3

#	Article	IF	CITATIONS
127	Transcriptomic and Functional Studies of the RGS Protein Rax1 in Aspergillus fumigatus. Pathogens, 2020, 9, 36.	2.8	3
128	Investigation of In Vivo Protein Interactions in Aspergillus Spores. Methods in Molecular Biology, 2012, 944, 251-257.	0.9	2
129	Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response. Journal of Proteomics, 2016, 148, 26-35.	2.4	2
130	Antimicrobial Properties of Glass Surface Functionalized with Silver-doped Terminal-alkynyl Monolayers. Bulletin of the Korean Chemical Society, 2014, 35, 39-44.	1.9	2
131	Mild, Selective Oxidation of Aromatic Alcohols Using β -Cyclodextrin-Functionalized Glass Microparticles: Characterization, Stability, and Application. Synthetic Communications, 2014, 44, 589-599.	2.1	1