Sandra Alaniz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521034/publications.pdf

Version: 2024-02-01

516710 610901 36 645 16 24 citations h-index g-index papers 37 37 37 533 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Diversity of Botryosphaeriaceae species causing stem canker and fruit rot in olive trees in Uruguay. Journal of Phytopathology, 2022, 170, 264-277.	1.0	6
2	Reclassification of the Main Causal Agent of Glomerella Leaf Spot on Apple into <i>Colletotrichum chrysophilum </i> in Southern Brazil and Uruguay. Phytopathology, 2022, 112, 1825-1832.	2.2	4
3	Olive anthracnose caused by Colletotrichum in Uruguay: symptoms, species diversity and pathogenicity on flowers and fruits. European Journal of Plant Pathology, 2021, 160, 663-681.	1.7	13
4	Release dynamics of Venturia inaequalis ascospores in Uruguay. Tropical Plant Pathology, 2021, 46, 414-421.	1.5	0
5	First report of Anthracnose on Peach Fruit Caused by Colletotrichum siamense in Uruguay. Plant Disease, 2021, , .	1.4	2
6	Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome. Journal of Fungi (Basel, Switzerland), 2021, 7, 686.	3.5	36
7	Sensitivity of Venturia inaequalis to dodine in Uruguay. Tropical Plant Pathology, 2021, 46, 643-650.	1.5	O
8	Diversity of the <i>Ganoderma</i> species in Uruguay. Neotropical Biodiversity, 2021, 7, 570-585.	0.5	3
9	Genetic diversity evidence a mixed reproduction mode in Venturia oleaginea populations in Uruguay. Journal of Plant Pathology, 2020, 102, 123-133.	1.2	3
10	Genetic and pathogenic diversity of Colletotrichumspecies associated with apple diseases in southern Brazil and Uruguay. Acta Horticulturae, 2019, , 71-76.	0.2	1
11	Ascospore Infection and Colletotrichum Species Causing Glomerella Leaf Spot of Apple in Uruguay. Plant Pathology Journal, 2019, 35, 100-111.	1.7	14
12	First Report of <i>Colletotrichum siamense</i> Causing Apple Bitter Rot in Central Argentina. Plant Disease, 2018, 102, 250-250.	1.4	5
13	First Report of Glomerella Leaf Spot of Apple Caused by Colletotrichum fructicola in Uruguay. Plant Disease, 2017, 101, 834-834.	1.4	20
14	Evaluation of grapevine rootstocks against soilborne pathogens associated with trunk diseases. Acta Horticulturae, 2016, , 245-250.	0.2	5
15	Botryosphariaceae species associated with stem canker, die-back and fruit rot on apple in Uruguay. European Journal of Plant Pathology, 2016, 146, 637-655.	1.7	36
16	New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biology, 2015, 119, 229-244.	2.5	81
17	Colletotrichum fructicola is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Tropical Plant Pathology, 2015, 40, 265-274.	1.5	25
18	Sensitivity of <i>Venturia inaequalis</i> to Trifloxystrobin and Difenoconazole in Uruguay. Journal of Phytopathology, 2015, 163, 1-10.	1.0	25

#	Article	IF	CITATIONS
19	Elimination of summer fungicide sprays for apple scab (Venturia inaequalis) management in Uruguay. Scientia Horticulturae, 2014, 165, 331-335.	3.6	11
20	First Report of <i>Colletotrichum karstii</i> Causing Glomerella Leaf Spot on Apple in Santa Catarina State, Brazil. Plant Disease, 2014, 98, 157-157.	1.4	23
21	First Report of <i>Colletotrichum nymphaeae</i> Causing Apple Bitter Rot in Southern Brazil. Plant Disease, 2014, 98, 567-567.	1.4	29
22	First Report of <i>Colletotrichum acutatum</i> and <i>C. fragariae</i> Causing Bitter Rot of Apple in Uruguay. Plant Disease, 2012, 96, 458-458.	1.4	11
23	First Report of <i>Cylindrocladiella parva</i> and <i>C. peruviana</i> Associated with Black-foot Disease of Grapevine in Spain. Plant Disease, 2012, 96, 1381-1381.	1.4	7
24	First Report of <i>Pestalotiopsis clavispora</i> Causing Dieback on Blueberry in Uruguay. Plant Disease, 2012, 96, 914-914.	1.4	21
25	Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. Fungal Biology, 2011, 115, 236-244.	2.5	10
26	Evaluation of fungicides to control Cylindrocarpon liriodendri and Cylindrocarpon macrodidymum in vitro, and their effect during the rooting phase in the grapevine propagation process. Crop Protection, 2011, 30, 489-494.	2.1	25
27	First Report of <i>Campylocarpon fasciculare</i> Causing Black Foot Disease of Grapevine in Spain. Plant Disease, 2011, 95, 1028-1028.	1.4	5
28	Outbreak of a New <i>Phytophthora</i> sp. Associated with Severe Decline of Almond Trees in Eastern Spain. Plant Disease, 2010, 94, 534-541.	1.4	22
29	Effect of hotâ€water treatments <i>in vitro</i> on conidial germination and mycelial growth of grapevine trunk pathogens. Annals of Applied Biology, 2010, 156, 231-241.	2.5	25
30	Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 2010, 125, 305-308.	3.6	17
31	Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 2009, 113, 16-23.	2.5	42
32	Characterization of <i>Cylindrocarpon liriodendri</i> Associated with Black Foot Disease of Grapevine in Iran. Journal of Phytopathology, 2009, 157, 642-645.	1.0	16
33	A Multiplex PCR System for the Specific Detection of <i>Cylindrocarpon liriodendri, C. macrodidymum</i> , and <i>C. pauciseptatum</i> from Grapevine. Plant Disease, 2009, 93, 821-825.	1.4	23
34	First Report of <i>Phaeoacremonium scolyti</i> Causing Petri Disease of Grapevine in Spain. Plant Disease, 2008, 92, 836-836.	1.4	14
35	Characterization of <i>Cylindrocarpon</i> Species Associated with Black Foot Disease of Grapevine in Spain. Plant Disease, 2007, 91, 1187-1193.	1.4	65
36	Plant protection for a sustainable agriculture. International Journal of Pest Management, 0, , 1-2.	1.8	0

3