
H Scott Fogler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5521004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of transport and reaction on wormhole formation in porous media. AICHE Journal, 1998, 44, 1933-1949.	1.8	447
2	Pore evolution and channel formation during flow and reaction in porous media. AICHE Journal, 1988, 34, 45-54.	1.8	434
3	Formation and aging of incipient thin film wax-oil gels. AICHE Journal, 2000, 46, 1059-1074.	1.8	413
4	Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions. Langmuir, 1997, 13, 3295-3307.	1.6	185
5	A network model for deep bed filtration of solid particles and emulsion drops. AICHE Journal, 1988, 34, 1761-1772.	1.8	183
6	Morphological evolution of thick wax deposits during aging. AICHE Journal, 2001, 47, 6-18.	1.8	180
7	The Effect of Asphaltenes on the Gelation of Waxy Oils. Energy & Fuels, 2003, 17, 1630-1640.	2.5	167
8	Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 1978, 88, 513-528.	1.4	158
9	Modeling flow in disordered packed beds from pore-scale fluid mechanics. AICHE Journal, 1997, 43, 1377-1389.	1.8	155
10	A Fundamental Study of Asphaltene Deposition. Energy & amp; Fuels, 2013, 27, 725-735.	2.5	149
11	Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 1978, 88, 499-511.	1.4	148
12	Effect of Temperature on the Precipitation Kinetics of Asphaltenes. Energy & Fuels, 2011, 25, 694-700.	2.5	143
13	A fundamental model of wax deposition in subsea oil pipelines. AICHE Journal, 2011, 57, 2955-2964.	1.8	134
14	The Fractal Aggregation of Asphaltenes. Langmuir, 2013, 29, 8799-8808.	1.6	124
15	Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. Journal of Fluid Mechanics, 1999, 385, 129-156.	1.4	122
16	Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels, 2009, 23, 1575-1582.	2.5	120
17	Classification of Asphaltenes via Fractionation and the Effect of Heteroatom Content on Dissolution Kinetics. Energy & Fuels, 2000, 14, 25-30.	2.5	115
18	Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnology and Bioengineering, 2000, 69, 47-56.	1.7	114

H SCOTT FOGLER

#	Article	IF	CITATIONS
19	Paraffin Polydispersity Facilitates Mechanical Gelation. Industrial & Engineering Chemistry Research, 2005, 44, 7242-7254.	1.8	109
20	Biomass plug development and propagation in porous media. Biotechnology and Bioengineering, 2001, 72, 353-363.	1.7	105
21	Modeling the Aggregation of Asphaltene Nanoaggregates in Crude Oilâ^Precipitant Systems. Energy & Fuels, 2011, 25, 1585-1596.	2.5	105
22	Use of Inorgano-Organo-Clays in the Removal of Priority Pollutants from Industrial Wastewaters: Adsorption of Benzo(a)pyrene and Chlorophenols from Aqueous Solutions. Clays and Clay Minerals, 1990, 38, 287-293.	0.6	93
23	Existence of a critical carbon number in the aging of a wax-oil gel. AICHE Journal, 2001, 47, 2111-2124.	1.8	89
24	Waxy Oil Gel Breaking Mechanisms: Adhesive versus Cohesive Failure. Energy & Fuels, 2008, 22, 480-487.	2.5	87
25	Use of Inorgano-Organo-Clays in the Removal of Priority Pollutants from Industrial Wastewaters: Structural Aspects. Clays and Clay Minerals, 1990, 38, 277-286.	0.6	83
26	The Effect of Operating Temperatures on Wax Deposition. Energy & amp; Fuels, 2011, 25, 5180-5188.	2.5	82
27	Multiscale Scattering Investigations of Asphaltene Cluster Breakup, Nanoaggregate Dissociation, and Molecular Ordering. Langmuir, 2013, 29, 15423-15432.	1.6	79
28	Competition among flow, dissolution, and precipitation in porous media. AICHE Journal, 1989, 35, 1177-1185.	1.8	75
29	Combined Asphaltene Aggregation and Deposition Investigation. Energy & amp; Fuels, 2016, 30, 1979-1986.	2.5	71
30	Thermodynamic Solubility Models to Predict Asphaltene Instability in Live Crude Oilsâ€. Energy & Fuels, 2007, 21, 1248-1255.	2.5	67
31	Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS. AICHE Journal, 1996, 42, 3153-3163.	1.8	66
32	Characterization of fractionated asphaltenes by UV–vis and NMR self-diffusion spectroscopy. Journal of Colloid and Interface Science, 2004, 271, 372-380.	5.0	66
33	Bulk Stabilization in Wax Deposition Systems. Energy & amp; Fuels, 2004, 18, 1005-1013.	2.5	65
34	Population balance modeling of the dissolution of polydisperse solids: Rate limiting regimes. AICHE Journal, 1987, 33, 54-63.	1.8	63
35	Mechanistic Investigation of Asphaltene Deposition. Energy & amp; Fuels, 2016, 30, 8915-8921.	2.5	62
36	Application of neutron radiography to image flow phenomena in porous media. AICHE Journal, 1992, 38, 481-488.	1.8	61

H SCOTT FOGLER

#	Article	IF	CITATIONS
37	Effect of pH and Layer Charge on Formation Damage in Porous Media Containing Swelling Clays. Langmuir, 1997, 13, 2863-2872.	1.6	60
38	A Unified Model for Aggregation of Asphaltenes. Energy & Fuels, 2013, 27, 2497-2505.	2.5	60
39	Kinetic Study of Asphaltene Dissolution in Amphiphile/Alkane Solutions. Industrial & Engineering Chemistry Research, 1997, 36, 3960-3967.	1.8	57
40	Study of Asphaltene Precipitation Using Refractive Index Measurement. Petroleum Science and Technology, 2003, 21, 591-613.	0.7	57
41	Revisiting the flocculation kinetics of destabilized asphaltenes. Advances in Colloid and Interface Science, 2017, 244, 267-280.	7.0	52
42	Influence ofn-paraffin composition on the aging of wax-oil gel deposits. AICHE Journal, 2003, 49, 3241-3252.	1.8	51
43	Kinetic Study of Scale Inhibitor Precipitation in Squeeze Treatment. Crystal Growth and Design, 2005, 5, 329-335.	1.4	48
44	Effect of Precipitating Conditions on the Formation of Calciumâ^'HEDP Precipitates. Langmuir, 1996, 12, 5231-5238.	1.6	46
45	Colloidally induced smectitic fines migration: Existence of microquakes. AICHE Journal, 1997, 43, 565-576.	1.8	46
46	Reduction of porous media permeability from in situLeuconostoc mesenteroides growth and dextran production. , 1996, 50, 6-15.		45
47	Mechanism of Wax Deposition on Cold Surfaces: Gelation and Deposit Aging. Energy & Fuels, 2019, 33, 3776-3786.	2.5	45
48	Comments on analogies for correlated heat and mass transfer in turbulent flow. AICHE Journal, 2004, 50, 1623-1626.	1.8	44
49	Effect of Asphaltene Concentration on the Aggregation and Precipitation Tendency of Asphaltenes. Energy & Fuels, 2014, 28, 909-919.	2.5	42
50	Rotating Disk Apparatus for Reaction Rate Studies in Corrosive Liquid Environments. Review of Scientific Instruments, 1972, 43, 225-229.	0.6	41
51	Leuconostoc mesenteroides growth kinetics with application to bacterial profile modification. Biotechnology and Bioengineering, 1994, 43, 865-873.	1.7	41
52	Fused Chemical Reactions. 2. Encapsulation: Application to Remediation of Paraffin Plugged Pipelinesâ€. Industrial & Engineering Chemistry Research, 2001, 40, 5058-5065.	1.8	41
53	PEPTIZATION AND COAGULATION OF ASPHALTENES IN APOLAR MEDIA USING OIL-SOLUBLE POLYMERS. Petroleum Science and Technology, 1996, 14, 75-100.	0.2	40
54	Facilitated diffusion in the dissolution of carboxylic polymers. AICHE Journal, 2005, 51, 415-425.	1.8	40

H SCOTT FOGLER

#	Article	IF	CITATIONS
55	Method to Determine the Wax Solubility Curve in Crude Oil from Centrifugation and High Temperature Gas Chromatography Measurements. Energy & Fuels, 2010, 24, 1753-1761.	2.5	40
56	Reaction Kinetics and Mechanisms of Zeolite Dissolution in Hydrochloric Acid. Industrial & Engineering Chemistry Research, 2005, 44, 7738-7745.	1.8	33
57	Fused Chemical Reactions:Â The Use of Dispersion To Delay Reaction Time in Tubular Reactors. Industrial & Engineering Chemistry Research, 1998, 37, 2203-2207.	1.8	32
58	Multilayer Deposition of Stable Colloidal Particles during Flow within Cylindrical Pores. Langmuir, 1998, 14, 4435-4444.	1.6	32
59	Effect of <i>n</i> -Alkane Precipitants on Aggregation Kinetics of Asphaltenes. Energy & Fuels, 2015, 29, 2190-2196.	2.5	32
60	On the movement of multiple reaction zones in porous media. AICHE Journal, 1980, 26, 403-411.	1.8	31
61	Wax deposition modeling of oil/water stratified channel flow. AICHE Journal, 2011, 57, 841-851.	1.8	30
62	Fundamental study of the dissolution of calcium phosphonates from porous media. AICHE Journal, 1996, 42, 2883-2896.	1.8	29
63	Dioxon Sorption by Hydroxy-Aluminum-Treated Clays. Clays and Clay Minerals, 1989, 37, 487-492.	0.6	28
64	Fundamental Investigation of Wax Diffusion Characteristics in Water-in-Oil Emulsion. Industrial & Engineering Chemistry Research, 2015, 54, 4420-4428.	1.8	28
65	Vicher: A virtual reality based educational module for chemical reaction engineering. Computer Applications in Engineering Education, 1996, 4, 285-296.	2.2	24
66	A fundamental wax deposition model for waterâ€inâ€oil dispersed flows in subsea pipelines. AICHE Journal, 2017, 63, 4201-4213.	1.8	24
67	Oscillations of a Gas Bubble in Viscoelastic Liquids Subject to Acoustic and Impulsive Pressure Variations. Journal of Applied Physics, 1971, 42, 259-263.	1.1	21
68	Dissolution of powdered minerals: The effect of polydispersity. AICHE Journal, 1989, 35, 865-868.	1.8	20
69	Entrapment of Water Droplets in Wax Deposits from Water-in-Oil Dispersion and Its Impact on Deposit Build-up. Energy & Fuels, 2017, 31, 340-350.	2.5	18
70	The removal of trace levels of dioxins from water by sorption on modified clay. Environmental Progress, 1985, 4, 239-245.	0.8	17
71	The role of conduction/valence bands and redox potential in accelerated mineral dissolution. AICHE Journal, 1986, 32, 1702-1709.	1.8	14
72	Interactive computer modules for undergraduate chemical engineering instruction. Computer Applications in Engineering Education, 1992, 1, 11-24.	2.2	12

H Scott Fogler

#	Article	IF	CITATIONS
73	The integration of process safety into a chemical reaction engineering course: Kinetic modeling of the T2 incident. Process Safety Progress, 2011, 30, 39-44.	0.4	12
74	An experimentally validated heat and mass transfer model for wax deposition from flowing oil onto a cold surface. AICHE Journal, 2021, 67, e17063.	1.8	11
75	Determination of flow profiles in porous media using shifts in gamma spectra. AICHE Journal, 1990, 36, 827-836.	1.8	6
76	Alteration of the growth rate and lag time ofLeuconostoc mesenteroides NRRL-B523. Biotechnology and Bioengineering, 2001, 72, 603-610.	1.7	6
77	DEVELOPMENT OF RADIAL MODELS FOR FORMATION DAMAGE IN POROUS MEDIA. Chemical Engineering Communications, 1991, 108, 67-83.	1.5	4
78	Model for the reaction-rate-limited dissolution of solids with Etch-rate heterogeneities. AICHE Journal, 1996, 42, 2654-2660.	1.8	3
79	Design Strategies for Reducedâ€scale Surface Composition Gradients via <scp>CVD</scp> Copolymerization. Chemical Vapor Deposition, 2014, 20, 23-31.	1.4	3
80	Effect of Air on the Kinetics of Asphaltene Precipitation from Diluted Crude Oils. Energy & Fuels, 2020, 34, 1408-1421.	2.5	2
81	Biomass evolution in porous media and its effects on permeability under starvation conditions. , 2000, 69, 47.		2
82	Laserâ€Enhanced Material Selectivity in  N â€â€‰â€â€‰GaAs /  N  â€â€‰Al0.4 Electrochemical Society, 1994, 141, 2893-2898.	Ga0,6As H 1.3	leterostructure
83	High-temperature kinetic study for the reactive ion etching of InP in BCl3/Ar/O2. AICHE Journal, 1995, 41, 658-665.	1.8	1
84	Reaction kinetics of photoactive defects in semiconductor dissolution. AICHE Journal, 1996, 42, 2279-2287.	1.8	1
85	Interactive creative problem solving. Computer Applications in Engineering Education, 1996, 4, 35-39.	2.2	0
86	Fused Chemical Reactions: The Use of Encapsulation to Control the Temperature Profile in Tubular Reactors. Chemie-Ingenieur-Technik, 2001, 73, 763-764.	0.4	0