Kaixu Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5520538/publications.pdf Version: 2024-02-01

Κλινμ Βλι

#	Article	IF	CITATIONS
1	Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 2020, 50, 1640-1725.	12.8	68
2	Spatiotemporal trend analysis for fine particulate matter concentrations in China using high-resolution satellite-derived and ground-measured PM2.5 data. Journal of Environmental Management, 2019, 233, 530-542.	7.8	55
3	Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management. Journal of Environmental Management, 2017, 201, 227-240.	7.8	49
4	LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion. Earth System Science Data, 2022, 14, 907-927.	9.9	46
5	Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China. Atmospheric Chemistry and Physics, 2021, 21, 2945-2958.	4.9	43
6	Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundamental Research, 2021, 1, 240-258.	3.3	40
7	Multisensor Satellite Image Fusion and Networking for All-Weather Environmental Monitoring. IEEE Systems Journal, 2018, 12, 1341-1357.	4.6	37
8	Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations. Remote Sensing of Environment, 2016, 182, 150-168.	11.0	35
9	Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential factors. Journal of Environmental Management, 2021, 288, 112368.	7.8	34
10	Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements. Environmental Pollution, 2019, 254, 113047.	7.5	32
11	Smart Information Reconstruction via Time-Space-Spectrum Continuum for Cloud Removal in Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1898-1912.	4.9	27
12	Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979–2013. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1459-1474.	3.3	21
13	Influence of COVID-19 lockdown overlapping Chinese Spring Festival on household PM2.5 in rural Chinese homes. Chemosphere, 2021, 278, 130406.	8.2	21
14	Filling the gaps of in situ hourly PM _{2.5} concentration data with the aid of empirical orthogonal function analysis constrained by diurnal cycles. Atmospheric Measurement Techniques, 2020, 13, 1213-1226.	3.1	19
15	Synergistic data fusion of multimodal AOD and air quality data for near real-time full coverage air pollution assessment. Journal of Environmental Management, 2022, 302, 114121.	7.8	18
16	Multiscale and multisource data fusion for full-coverage PM2.5 concentration mapping: Can spatial pattern recognition come with modeling accuracy?. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184, 31-44.	11.1	17
17	A homogenized daily in situ PM _{2.5} concentration dataset from the national air quality monitoring network in China. Earth System Science Data, 2020, 12, 3067-3080.	9.9	16
18	Spectral Information Adaptation and Synthesis Scheme for Merging Cross-Mission Ocean Color Reflectance Observations From MODIS and VIIRS. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 311-329.	6.3	15

Kaixu Bai

#	Article	lF	CITATIONS
19	Particulate Amines in the Background Atmosphere of the Yangtze River Delta, China: Concentration, Size Distribution, and Sources. Advances in Atmospheric Sciences, 2021, 38, 1128-1140.	4.3	15
20	Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5 /AOD relationship in eastern China using radiosonde data. Environmental Pollution, 2019, 251, 380-389.	7.5	14
21	Diagnosis of the artificial intelligence-based predictions of flow regime in a constructed wetland for stormwater pollution control. Ecological Informatics, 2015, 28, 42-60.	5.2	13
22	Validation and Calibration of CAMS PM2.5 Forecasts Using In Situ PM2.5 Measurements in China and United States. Remote Sensing, 2020, 12, 3813.	4.0	13
23	Spatiotemporal Associations between PM2.5 and SO2 as well as NO2 in China from 2015 to 2018. International Journal of Environmental Research and Public Health, 2019, 16, 2352.	2.6	12
24	Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements. Frontiers of Earth Science, 2015, 9, 369-380.	2.1	11
25	A Comparative Assessment of Multisensor Data Merging and Fusion Algorithms for High-Resolution Surface Reflectance Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4044-4059.	4.9	11
26	Multi-source hierarchical data fusion for high-resolution AOD mapping in a forest fire event. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102366.	2.8	11
27	Quantifying impacts of crop residue burning in the North China Plain on summertime tropospheric ozone over East Asia. Atmospheric Environment, 2018, 194, 14-30.	4.1	10
28	An intercomparison of multidecadal observational and reanalysis data sets for global total ozone trends and variability analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7119-7139.	3.3	9
29	Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements. International Journal of Remote Sensing, 2013, 34, 5228-5242.	2.9	8
30	Estimating Ground-Level Concentrations of Multiple Air Pollutants and Their Health Impacts in the Huaihe River Basin in China. International Journal of Environmental Research and Public Health, 2019, 16, 579.	2.6	8
31	Impact of near-surface turbulence on PM2.5 concentration in Chengdu during the COVID-19 pandemic. Atmospheric Environment, 2022, 268, 118848.	4.1	8
32	Do More Frequent Temperature Inversions Aggravate Haze Pollution in China?. Geophysical Research Letters, 2022, 49, .	4.0	8
33	The impact of global unknown teleconnection patterns on terrestrial precipitation across North and Central America. Atmospheric Research, 2017, 193, 107-124.	4.1	7
34	Spatial and Temporal Variabilities of PM2.5 Concentrations in China Using Functional Data Analysis. Sustainability, 2019, 11, 1620.	3.2	6
35	Evaluation of Vegetation Indexes and Green-Up Date Extraction Methods on the Tibetan Plateau. Remote Sensing, 2022, 14, 3160.	4.0	6
36	Characteristics of Chemical Speciation in PM1 in Six Representative Regions in China. Advances in Atmospheric Sciences, 2021, 38, 1101-1114.	4.3	4

#	Article	IF	CITATIONS
37	Optimal Planning of Air Quality-Monitoring Sites for Better Depiction of PM _{2.5} Pollution across China. ACS Environmental Au, 2022, 2, 314-323.	7.0	4