
Kai-Hsiang Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5520414/publications.pdf Version: 2024-02-01

KAL-HSIANC KANC

#	Article	IF	CITATIONS
1	Overexpression of Heme Oxygenase-1 Protects Dopaminergic Neurons against 1-Methyl-4-Phenylpyridinium-Induced Neurotoxicity. Molecular Pharmacology, 2008, 74, 1564-1575.	2.3	122
2	Quantitative Evaluation of Focused Ultrasound with a Contrast Agent on Blood-Brain Barrier Disruption. Ultrasound in Medicine and Biology, 2007, 33, 1421-1427.	1.5	105
3	Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. Journal of Controlled Release, 2011, 150, 111-116.	9.9	74
4	Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology, 2013, 73, 380-387.	4.1	41
5	Cytokine MIF Enhances Blood-Brain Barrier Permeability: Impact for Therapy in Ischemic Stroke. Scientific Reports, 2018, 8, 743.	3.3	38
6	Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1. Journal of Neurochemistry, 2011, 117, no-no.	3.9	33
7	A rapid, nongenomic pathway facilitates the synaptic transmission induced by retinoic acid at the developing synapse. Journal of Cell Science, 2005, 118, 4721-4730.	2.0	27
8	Targeted Delivery of Erythropoietin by Transcranial Focused Ultrasound for Neuroprotection against Ischemia/Reperfusion-Induced Neuronal Injury: A Long-Term and Short-Term Study. PLoS ONE, 2014, 9, e90107.	2.5	27
9	Trends in major opioid analgesic consumption in Taiwan, 2002–2014. Journal of the Formosan Medical Association, 2017, 116, 529-535.	1.7	25
10	Hypoxic Preconditioning Suppresses Glial Activation and Neuroinflammation in Neonatal Brain Insults. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	22
11	Role of Spinal CXCL1 (GROα) in Opioid Tolerance. Anesthesiology, 2015, 122, 666-676.	2.5	21
12	Increase of oxidative stress by a novel PINK1 mutation, P209A. Free Radical Biology and Medicine, 2013, 58, 160-169.	2.9	19
13	Enhancement role of host 12/15-lipoxygenase in melanoma progression. European Journal of Cancer, 2013, 49, 2747-2759.	2.8	18
14	CXCL12/CXCR4 Signaling Contributes to the Pathogenesis of Opioid Tolerance: A Translational Study. Anesthesia and Analgesia, 2017, 124, 972-979.	2.2	15
15	Antagonism of proteasome inhibitor-induced heme oxygenase-1 expression by PINK1 mutation. PLoS ONE, 2017, 12, e0183076.	2.5	12
16	Mechanism of β-bungarotoxin in facilitating spontaneous transmitter release at neuromuscular synapse. Neuropharmacology, 2006, 51, 671-680.	4.1	10
17	Both A chain and B chain of β-bungarotoxin are functionally involved in the facilitation of spontaneous transmitter release in Xenopus nerve–muscle cultures. Toxicon, 2004, 43, 341-346.	1.6	7