Adam T Neal

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5520393/adam-t-neal-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,068 36 22 37 g-index h-index citations papers 7,996 5.96 5.1 37 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
36	EGallium oxide power electronics. APL Materials, 2022, 10, 029201	5.7	33
35	Si doping in MOCVD grown (010) E(AlxGa1⊠)2O3 thin films. <i>Journal of Applied Physics</i> , 2022 , 131, 145301	1 2.5	5
34	Pulsed Power Performance of EGaDIMOSFETs at L-Band. <i>IEEE Electron Device Letters</i> , 2020 , 41, 989-992	4.4	19
33	Reduction of unintentional Si doping in EGa2O3 grown via plasma-assisted molecular beam epitaxy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 043403	2.9	15
32	Electrical Properties 1. <i>Springer Series in Materials Science</i> , 2020 , 389-405	0.9	
31	MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. <i>Applied Physics Letters</i> , 2020 , 117, 262101	3.4	34
30	Lateral EGa2O3 field effect transistors. Semiconductor Science and Technology, 2020 , 35, 013002	1.8	38
29	Study of defects in EGa2O3 by isothermal capacitance transient spectroscopy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 041204	1.3	3
28	Zeeman spin-splitting in the (010) EGa2O3 two-dimensional electron gas. <i>Applied Physics Letters</i> , 2019 , 115, 262103	3.4	O
27	Demonstration of high mobility and quantum transport in modulation-doped E(AlxGa1-x)2O3/Ga2O3 heterostructures. <i>Applied Physics Letters</i> , 2018 , 112, 173502	3.4	192
26	Donors and deep acceptors in EGa2O3. <i>Applied Physics Letters</i> , 2018 , 113, 062101	3.4	148
25	Towards High-Mobility Heteroepitaxial EGa2O3 on Sapphire Dependence on The Substrate Off-Axis Angle. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1700467	1.6	51
24	EGa2O3 defect study by steady-state capacitance spectroscopy. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 091101	1.4	12
23	P-type conduction in two-dimensional MoS2 via oxygen incorporation. <i>Applied Physics Letters</i> , 2017 , 110, 193103	3.4	46
22	Ge-Doped \${beta }\$ -Ga2O3 MOSFETs. <i>IEEE Electron Device Letters</i> , 2017 , 38, 775-778	4.4	124
21	Incomplete Ionization of a 110 meV Unintentional Donor in EGaO and its Effect on Power Devices. <i>Scientific Reports</i> , 2017 , 7, 13218	4.9	60
20	Weak localization in few-layer black phosphorus. 2D Materials, 2016 , 3, 024003	5.9	15

(2010-2016)

deposition. Applied Physics Letters, 2016 , 109, 132103	3.4	96
Transport studies in 2D transition metal dichalcogenides and black phosphorus. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 263002	1.8	10
The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights. <i>IEEE Electron Device Letters</i> , 2014 , 35, 795-797	4.4	142
Ambipolar phosphorene field-effect transistors with dielectric capping 2014 ,		4
Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. <i>ACS Nano</i> , 2014 , 8, 1031-8	16.7	202
Two-dimensional TaSe2 metallic crystals: spin-orbit scattering length and breakdown current density. <i>ACS Nano</i> , 2014 , 8, 9137-42	16.7	40
Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033-41	16.7	4487
Magneto-transport in MoS2: phase coherence, spin-orbit scattering, and the hall factor. <i>ACS Nano</i> , 2013 , 7, 7077-82	16.7	78
Molecular Doping of Multilayer \${rm MoS}_{2}\$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances. <i>IEEE Electron Device Letters</i> , 2013 , 34, 1328-1330	4.4	196
Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. <i>Nano Letters</i> , 2013 , 13, 2640-6	11.5	168
(Invited) Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts. <i>ECS Transactions</i> , 2013 , 58, 203-208	1	17
Metal contacts to MoS2: A two-dimensional semiconductor 2012 ,		33
Size-Dependent-Transport Study of \$hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}\$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion. <i>IEEE Electron Device Letters</i> , 2012 , 33, 967-969	4.4	44
Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012 , 6, 8563-9	16.7	594
Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors. <i>Applied Physics Letters</i> , 2011 , 99, 152113	3.4	63
(Invited) ALD High-k as a Common Gate Stack Solution for Nanoelectronics. <i>ECS Transactions</i> , 2010 , 28, 51-68	1	3
(Invited) Atomic-Layer-Deposited High-k Dielectric Integration on Epitaxial Graphene. <i>ECS Transactions</i> , 2010 , 33, 459-466	1	4
Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. Journal of Physics Condensed Matter, 2010, 22, 334214	1.8	91
	The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Device Letters, 2014, 35, 795-797 Ambipolar phosphorene field-effect transistors with dielectric capping 2014, Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano, 2014, 8, 1031-8 Two-dimensional TaSe2 metallic crystals: spin-orbit scattering length and breakdown current density. ACS Nano, 2014, 8, 9137-42 Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033-41 Magneto-transport in MoS2: phase coherence, spin-orbit scattering, and the hall factor. ACS Nano, 2013, 7, 7077-82 Molecular Doping of Multilayer S(rm MoS)_(2)S Field-Effect Transistors: Reduction in Sheet and Contact Resistances. IEEE Electron Device Letters, 2013, 34, 1328-1330 Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Letters, 2013, 13, 2640-6 (Invited) Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts. ECS Transactions, 2013, 58, 203-208 Metal contacts to MoS2: A two-dimensional semiconductor 2012, Size-Dependent-Transport Study of Shbox(In)_(0.53) hbox(Ga)_(0.47)hbox(As)\$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion. IEEE Electron Device Letters, 2012, 33, 967-969 Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6, 8563-9 Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2011, 99, 152113 (Invited) ALD High-k as a Common Gate Stack Solution for Nanoelectronics. ECS Transactions, 2010, 33, 459-466 Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.	The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights. IEEE Electron Device Letters, 2014, 35, 795-797 Ambipolar phosphorene field-effect transistors with dielectric capping 2014, Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano, 2014, 8, 1031-8 Two-dimensional TaSe2 metallic crystals: spin-orbit scattering length and breakdown current density. ACS Nano, 2014, 8, 9137-42 Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033-41 16-7 Magneto-transport in MoS2: phase coherence, spin-orbit scattering, and the hall factor. ACS Nano, 2014, 7, 7077-82 Molecular Doping of Multilayer Sfrm MoS). [2]5 Field-Effect Transistors: Reduction in Sheet and Contact Resistances. IEEE Electron Device Letters, 2013, 34, 1328-1330 44 Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Letters, 2013, 13, 2640-6 (Invited) Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts. ECS Transactions, 2013, 58, 203-208 Metal contacts to MoS2: A two-dimensional semiconductor 2012, Size-Dependent-Transport Study of Shbox(In). [0.53] hbox(Ga). [0.47]hbox(As)\$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion. IEEE Electron Device Letters, 2012, 33, 967-969 Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6, 8563-9 16-7 Effects of (NH4)25 passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2011, 99, 152113 44 (Invited) ALO High-k as a Common Gate Stack Solution for Nanoelectronics. ECS Transactions, 2010, 28, 51-68 (Invited) Atomic-Layer-Deposited High-k Dielectric Integration on Epitaxial Graphene. ECS Transactions, 2010, 33, 459-466

Electronic Transport Properties in Top-Gated Epitaxial Graphene on Silicon Carbide with ALD Al2O3 High-K Dielectric **2010**,

1