Garrett McKay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5520228/publications.pdf

Version: 2024-02-01

430442 525886 28 989 18 27 citations g-index h-index papers 29 29 29 955 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals. Water Research, 2014, 50, 408-419.	5.3	111
2	Investigation of the Coupled Effects of Molecular Weight and Charge-Transfer Interactions on the Optical and Photochemical Properties of Dissolved Organic Matter. Environmental Science & Samp; Technology, 2016, 50, 8093-8102.	4.6	97
3	Predicting Reactive Intermediate Quantum Yields from Dissolved Organic Matter Photolysis Using Optical Properties and Antioxidant Capacity. Environmental Science & Environmen	4.6	91
4	Temperature Dependence of the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter. Environmental Science & Environmental Science	4.6	77
5	Temperature Dependence of the Reaction between the Hydroxyl Radical and Organic Matter. Environmental Science & Environmental	4.6	73
6	Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. Water Research, 2018, 144, 64-75.	5.3	67
7	The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics. Environmental Science & Environmental	4.6	60
8	Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter. Environmental Science & Enviro	4.6	41
9	Critical Review of UV-Advanced Reduction Processes for the Treatment of Chemical Contaminants in Water. ACS Environmental Au, 2022, 2, 178-205.	3.3	39
10	Low levels of iron enhance UV/H2O2 efficiency at neutral pH. Water Research, 2018, 130, 234-242.	5.3	36
11	Emerging investigator series: critical review of photophysical models for the optical and photochemical properties of dissolved organic matter. Environmental Sciences: Processes and Impacts, 2020, 22, 1139-1165.	1.7	35
12	Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Water Research, 2021, 205, 117677.	5.3	33
13	Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: Temperature dependence and reaction mechanism. Chemosphere, 2013, 92, 1417-1422.	4.2	31
14	Remediation of Chemically-Contaminated Waters Using Sulfate Radical Reactions: Kinetic Studies. ACS Symposium Series, 2011, , 247-263.	0.5	22
15	Temperature Dependence of Dissolved Organic Matter Fluorescence. Environmental Science & Emp; Technology, 2018, 52, 9022-9032.	4.6	22
16	Computational Assessment of the Three-Dimensional Configuration of Dissolved Organic Matter Chromophores and Influence on Absorption Spectra. Environmental Science & Environm	4.6	22
17	Photochemical Fate of Amicarbazone in Aqueous Media: Laboratory Measurement and Simulations. Environmental Engineering Science, 2015, 32, 730-740.	0.8	21
18	Kinetics of the reaction between the hydroxyl radical and organic matter standards from the International Humic Substance Society. Journal of Soils and Sediments, 2014, 14, 298-304.	1. 5	19

#	Article	IF	CITATIONS
19	Temperature dependence of hydroxyl radical reactions with chloramine species in aqueous solution. Chemosphere, 2017, 187, 123-129.	4.2	19
20	Relationships between the Physicochemical Properties of Dissolved Organic Matter and Its Reaction with Sodium Borohydride. Environmental Science & Environmental Science & 2021, 55, 10843-10851.	4.6	15
21	Quantifying Hydrated Electron Transformation Kinetics in UV-Advanced Reduction Processes Using the ⟨i⟩R⟨ i⟩⟨sub⟩eâ€",UV⟨ sub⟩ Method. Environmental Science & Enployed Science & Enploy	4.6	12
22	Photochemical generation of reactive intermediates from urban-waste bio-organic substances under UV and solar irradiation. Environmental Science and Pollution Research, 2017, 24, 18470-18478.	2.7	10
23	Use of optical properties for evaluating the presence of pyrogenic organic matter in thermally altered soil leachates. Environmental Sciences: Processes and Impacts, 2020, 22, 981-992.	1.7	7
24	Autoxidized Hydroquinone Mimics the Optical Properties of Chromophoric Dissolved Organic Matter. Environmental Science and Technology Letters, 2021, 8, 825-831.	3.9	5
25	Assessing the source of the photochemical formation of hydroxylating species from dissolved organic matter using model sensitizers. Environmental Sciences: Processes and Impacts, 2022, 24, 102-115.	1.7	4
26	Hydroxyl Radical Probes for the Comparison of Secondary Treated Wastewaters., 2014,, 247-263.		3
27	Removing Steroids from Contaminated Waters Using Radical Reactions. ACS Symposium Series, 2010, , 213-225.	0.5	2
28	Using Polyethylene Glycols To Understand the Temperature Dependence of the Dissolved Organic Matter-HO• Reaction. ACS Symposium Series, 2014, , 181-191.	0.5	0