
Deyber Arley Vargas Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5520113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron ionization mass spectrometry: Quo vadis?. Electrophoresis, 2022, 43, 1587-1600.	1.3	9
2	Porous layer open tubular nano liquid chromatography directly coupled to electron ionization mass spectrometry. Journal of Chromatography A, 2022, 1674, 463143.	1.8	8
3	Determination of parabens in wastewater samples via robotâ€assisted dynamic singleâ€drop microextraction and liquid chromatography–tandem mass spectrometry. Electrophoresis, 2022, 43, 1567-1576.	1.3	5
4	Microextraction columns for automated sample preparation. A review focusing on fully miniaturized column switching and bioanalytical applications. Advances in Sample Preparation, 2022, 3, 100031.	1.1	2
5	Magnetic solid-phase extraction of gingerols in ginger containing products. Talanta, 2021, 222, 121683.	2.9	17
6	Automated needle-sleeve based online hyphenation of solid-phase microextraction and liquid chromatography. Talanta, 2021, 221, 121608.	2.9	17
7	Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC - Trends in Analytical Chemistry, 2021, 135, 116156.	5.8	38
8	An overview of open tubular liquid chromatography with a focus on the coupling with mass spectrometry for the analysis of small molecules. Journal of Chromatography A, 2021, 1641, 461989.	1.8	25
9	Towards a universal automated and miniaturized sample preparation approach. Sustainable Chemistry and Pharmacy, 2021, 21, 100427.	1.6	7
10	Recent advances and trends in miniaturized sample preparation techniques. Journal of Separation Science, 2020, 43, 202-225.	1.3	121
11	Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. TrAC - Trends in Analytical Chemistry, 2020, 131, 116003.	5.8	26
12	The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Frontiers in Chemistry, 2020, 8, 664.	1.8	32
13	Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer. Talanta, 2020, 219, 121185.	2.9	35
14	Miniaturization of liquid chromatography coupled to mass spectrometry TrAC - Trends in Analytical Chemistry, 2020, 128, 115910.	5.8	30
15	Robotic-assisted dynamic large drop microextraction. Journal of Chromatography A, 2019, 1608, 460416.	1.8	19
16	Determination of ring-substituted amphetamines through automated online hollow fiber liquid-phase microextraction-liquid chromatography. Analytical and Bioanalytical Chemistry, 2019, 411, 7889-7897.	1.9	17
17	Polymorphism and thermal behavior of sodium cyclamate. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1307-1313.	2.0	5
18	Metal–organic framework mixed-matrix coatings on 3D printed devices. Applied Materials Today, 2019, 16, 21-27.	2.3	54

#	Article	IF	CITATIONS
19	Sample treatment platform for automated integration of microextraction techniques and liquid chromatography analysis. HardwareX, 2019, 5, e00056.	1.1	26
20	Automated online coupling of robot-assisted single drop microextraction and liquid chromatography. Journal of Chromatography A, 2019, 1595, 66-72.	1.8	34
21	Hyperporous carbon-coated 3D printed devices. Applied Materials Today, 2019, 14, 29-34.	2.3	16
22	Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta, 2018, 189, 241-248.	2.9	38
23	Solventes supramoleculares: Uma alternativa na microextração em fase lÃquida para análises cromatográficas. Scientia Chromatographica, 2017, 9, 83-100.	0.2	2
24	Thermal investigation on polymorphism in sodium saccharine. Journal of Thermal Analysis and Calorimetry, 2014, 117, 361-367.	2.0	14