
Sourav Bhattacharjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5520045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. Journal of Anatomy, 2022, 240, 429-446.	0.9	5
2	Molecular Descriptors as a Facile Tool toward Designing Surface-Functionalized Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2022, 19, 1168-1175.	2.3	4
3	Add Sugar to Chitosan: Mucoadhesion and In Vitro Intestinal Permeability of Mannosylated Chitosan Nanocarriers. Pharmaceutics, 2022, 14, 830.	2.0	6
4	Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacology and Translational Science, 2022, 5, 278-298.	2.5	9
5	The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Annals of Anatomy, 2021, 233, 151610.	1.0	4
6	Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opinion on Drug Discovery, 2021, 16, 235-254.	2.5	8
7	Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Therapeutic Delivery, 2021, 12, 21-36.	1.2	35
8	On harvesting and handling of porcine jejunal mucus: A few tricks of the trade. Journal of Pharmaceutical Sciences, 2021, , .	1.6	1
9	Silica-Coated Nanoparticles with a Core of Zinc, <scp>l</scp> -Arginine, and a Peptide Designed for Oral Delivery. ACS Applied Materials & Interfaces, 2020, 12, 1257-1269.	4.0	26
10	Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Frontiers in Pharmacology, 2020, 11, 517165.	1.6	9
11	Aptamers in diagnosis and therapeutics against the antimicrobial-resistant microorganisms: recent trends and challenges. Bioanalysis, 2020, 12, 1111-1115.	0.6	0
12	Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega, 2020, 5, 16701-16710.	1.6	187
13	Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology, 2020, 149, 104-116.	0.9	35
14	The UCD nanosafety workshop (03 December 2018): towards developing a consensus on safe handling of nanomaterials within the Irish university labs and beyond – a report. Nanotoxicology, 2019, 13, 717-732.	1.6	6
15	Shedding Light on the Trehaloseâ€Enabled Mucopermeation of Nanoparticles with Labelâ€Free Raman Spectroscopy. Small, 2019, 15, e1901679.	5.2	10
16	Track analysis of the passage of rhodamine-labeled liposomes across porcine jejunal mucus in a microchannel device. Therapeutic Delivery, 2018, 9, 419-433.	1.2	8
17	How efficient are the efficiency terms of encapsulation?. Therapeutic Delivery, 2018, 9, 237-239.	1.2	4
18	On the reproducibility crisis in nanomedicine: an interview with Sourav Bhattacharjee. International Journal of Pharmacokinetics, 2018, 3, 99-101.	0.5	0

#	Article	IF	CITATIONS
19	Label-Free Imaging and Optical Characterization of Tissues Based on Autofluorescence. ACS Omega, 2018, 3, 5926-5930.	1.6	9
20	Nanomedicine literature: the vicious cycle of reproducing the irreproducible. International Journal of Pharmacokinetics, 2017, 2, 15-19.	0.5	5
21	Nanoparticle passage through porcine jejunal mucus: Microfluidics and rheology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 863-873.	1.7	35
22	In relation to the following article "DLS and zeta potential — What they are and what they are not?― Journal of Controlled Release, 2016, 235, 337–351. Journal of Controlled Release, 2016, 238, 311-312.	4.8	14
23	DLS and zeta potential $\hat{a} \in$ What they are and what they are not?. Journal of Controlled Release, 2016, 235, 337-351.	4.8	2,428
24	Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine, 2015, 10, 2289-2305.	1.7	11
25	Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Advances, 2014, 4, 19321-19330.	1.7	66
26	Role of surface charge in bioavailability and biodistribution of tri-block copolymer nanoparticles in rats after oral exposure. Toxicology Research, 2013, 2, 187.	0.9	5
27	Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles. Nanotoxicology, 2013, 7, 71-84.	1.6	56
28	Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale, 2013, 5, 4870.	2.8	161
29	Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
30	Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Particle and Fibre Toxicology, 2012, 9, 11.	2.8	71
31	Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Particle and Fibre Toxicology, 2010, 7, 25.	2.8	224
32	Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. Nanotoxicology, 2009, 3, 339-347.	1.6	107