
Johan Bengtsson-Palme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5519849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
2	The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47, D259-D264.	14.5	2,072
3	Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233-237.	27.8	1,370
4	Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal <scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4, 914-919.	5.2	868
5	Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 2016, 86, 140-149.	10.0	612
6	Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 2018, 42, .	8.6	612
7	Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 2015, 16, 964.	2.8	587
8	BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 2014, 42, D737-D743.	14.5	564
9	<scp>metaxa</scp> 2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources, 2015, 15, 1403-1414.	4.8	426
10	The structure and diversity of human, animal and environmental resistomes. Microbiome, 2016, 4, 54.	11.1	355
11	Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nature Communications, 2018, 9, 3891.	12.8	313
12	Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 2018, 117, 132-138.	10.0	281
13	A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts. Microbes and Environments, 2015, 30, 145-150.	1.6	231
14	Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Science of the Total Environment, 2016, 572, 697-712.	8.0	213
15	The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 2015, 27, .	11.0	196
16	Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 2015, 13, 396-396.	28.6	194
17	Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 2014, 5, 648.	3.5	193
18	Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Science of the Total Environment, 2016, 553, 587-595.	8.0	166

#	Article	IF	CITATIONS
19	Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 0, 4, 37-63.	1.9	157
20	The Human Gut Microbiome as a Transporter of Antibiotic Resistance Genes between Continents. Antimicrobial Agents and Chemotherapy, 2015, 59, 6551-6560.	3.2	155
21	<scp>ITS</scp> 1: a <scp>DNA</scp> barcode better than <scp>ITS</scp> 2 in eukaryotes?. Molecular Ecology Resources, 2015, 15, 573-586.	4.8	152
22	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	12.3	123
23	Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Research, 2019, 162, 437-445.	11.3	95
24	Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van Leeuwenhoek, 2011, 100, 471-475.	1.7	88
25	Using metagenomics to investigate human and environmental resistomes. Journal of Antimicrobial Chemotherapy, 2017, 72, 2690-2703.	3.0	87
26	Introducing ribosomal tandem repeat barcoding for fungi. Molecular Ecology Resources, 2019, 19, 118-127.	4.8	78
27	Antibiotic resistance in the food supply chain: where can sequencing and metagenomics aid risk assessment?. Current Opinion in Food Science, 2017, 14, 66-71.	8.0	76
28	Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome, 2017, 5, 134.	11.1	75
29	Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environment International, 2018, 116, 255-268.	10.0	71
30	Does antifouling paint select for antibiotic resistance?. Science of the Total Environment, 2017, 590-591, 461-468.	8.0	70
31	Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nature Communications, 2018, 9, 1753.	12.8	62
32	The relation between Blastocystis and the intestinal microbiota in Swedish travellers. BMC Microbiology, 2017, 17, 231.	3.3	56
33	<i>In Vivo</i> Analysis of the Viable Microbiota and Helicobacter pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infection and Immunity, 2017, 85, .	2.2	55
34	Metagenomic sequencing of marine periphyton: taxonomic and functional insights into biofilm communities. Frontiers in Microbiology, 2015, 6, 1192.	3.5	49
35	The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants—but not always. Microbiome, 2018, 6, 125.	11.1	39
36	Evaluating and optimizing the performance of software commonly used for the taxonomic classification of <scp>DNA</scp> metabarcoding sequence data. Molecular Ecology Resources, 2017, 17, 760-769.	4.8	38

JOHAN BENGTSSON-PALME

#	Article	IF	CITATIONS
37	Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinformatics, 2018, 34, 4027-4033.	4.1	36
38	Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics, 2014, 15, 749.	2.8	35
39	Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys, 2018, 28, 65-82.	1.9	33
40	Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE, 2019, 14, e0210735.	2.5	33
41	The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies. F1000Research, 2018, 7, 459.	1.6	31
42	Metaxa2 Diversity Tools: Easing microbial community analysis with Metaxa2. Ecological Informatics, 2016, 33, 45-50.	5.2	30
43	What Is the Role of the Environment in the Emergence of Novel Antibiotic Resistance Genes? A Modeling Approach. Environmental Science & Technology, 2021, 55, 15734-15743.	10.0	28
44	Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics, 2016, 16, 2454-2460.	2.2	27
45	Microbial model communities: To understand complexity, harness the power of simplicity. Computational and Structural Biotechnology Journal, 2020, 18, 3987-4001.	4.1	27
46	Can branding and price of pharmaceuticals guide informed choices towards improved pollution control during manufacturing?. Journal of Cleaner Production, 2018, 171, 137-146.	9.3	25
47	Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics, 2017, 18, 682.	2.8	24
48	The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies. F1000Research, 2018, 7, 459.	1.6	24
49	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
50	Microbial Community Interactions Are Sensitive to Small Changes in Temperature. Frontiers in Microbiology, 2021, 12, 672910.	3.5	15
51	A reference cytochrome c oxidase subunit I database curated for hierarchical classification of arthropod metabarcoding data. PeerJ, 2018, 6, e5126.	2.0	14
52	Maximum levels of cross ontamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 5: Lincosamides: lincomycin. EFSA Journal, 2021, 19, e06856.	1.8	14
53	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed. Part 11: Sulfonamides. EFSA Journal, 2021, 19, e06863.	1.8	13
54	Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets. Research in Microbiology, 2012, 163, 407-412.	2.1	12

#	Article	IF	CITATIONS
55	Protection goals must guide risk assessment for antibiotics. Environment International, 2018, 111, 352-353.	10.0	12
56	Maximum levels of cross ontamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 13: Diaminopyrimidines: trimethoprim. EFSA Journal, 2021, 19, e06865.	1.8	12
57	Strategies for Taxonomic and Functional Annotation of Metagenomes. , 2018, , 55-79.		11
58	Maximum levels of cross ontamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 1: Methodology, general data gaps and uncertainties. EFSA Journal, 2021, 19, e06852.	1.8	11
59	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed.†Part 9: Polymyxins: colistin. EFSA Journal, 2021, 19, e06861.	1.8	10
60	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed.†Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin. EFSA Journal, 2021, 19, e06853.	1.8	9
61	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA Journal, 2021, 19, e06860.	1.8	8
62	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed.†Part 10: Quinolones: flumequine and oxolinic acid. EFSA Journal, 2021, 19, e06862.	1.8	8
63	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed.†Part 6: Macrolides: tilmicosin, tylosin and tylvalosin. EFSA Journal, 2021, 19, e06858.	1.8	8
64	FARAO: the flexible all-round annotation organizer. Bioinformatics, 2016, 32, 3664-3666.	4.1	6
65	Assessment and Management of Risks Associated With Antibiotic Resistance in the Environment. , 2019, , 243-263.		6
66	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA Journal, 2021, 19, e06864.	1.8	5
67	CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics, 2021, 37, 121-122.	4.1	4
68	Maximum levels of cross ontamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 7: Amphenicols: florfenicol and thiamphenicol. EFSA Journal, 2021, 19, e06859.	1.8	4
69	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€target feed.†Part 4: βâ€Lactams: amoxicillin and penicillin V. EFSA Journal, 2021, 19, e06855.	1.8	3
70	The complete mitochondrial genome of the copepod Calanus glacialis. Mitochondrial DNA Part B: Resources, 2017, 2, 506-507.	0.4	2
71	Mumame: a software tool for quantifying gene-specific point-mutations in shotgun metagenomic data. Metabarcoding and Metagenomics, 0, 3, .	0.0	2
72	Microbial retention and resistances in stormwater quality improvement devices treating road runoff. FEMS Microbes, 2021, 2, .	2.1	1

#	Article	IF	CITATIONS
73	Metaxa, Overview. , 2014, , 1-5.		1
74	Metaxa, Overview. , 2015, , 467-471.		0