
Nicholas T Hertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5519555/publications.pdf Version: 2024-02-01

NICHOLAS T HEDTZ

#	Article	IF	CITATIONS
1	Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell, 2014, 26, 414-427.	16.8	231
2	A Neo-Substrate that Amplifies Catalytic Activity of Parkinson's-Disease-Related Kinase PINK1. Cell, 2013, 154, 737-747.	28.9	229
3	A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature, 2011, 472, 366-369.	27.8	223
4	CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nature Genetics, 2018, 50, 603-612.	21.4	178
5	Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metabolism, 2015, 22, 907-921.	16.2	149
6	WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Science Signaling, 2015, 8, ra65.	3.6	133
7	Chemical Genetic Identification of NDR1/2 Kinase Substrates AAK1 and Rabin8ÂUncovers Their Roles in Dendrite Arborization and Spine Development. Neuron, 2012, 73, 1127-1142.	8.1	117
8	Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling. Cell, 2016, 164, 1031-1045.	28.9	109
9	A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region. ELife, 2014, 3, e03351.	6.0	84
10	MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development. Neuron, 2014, 84, 968-982.	8.1	75
11	Chemical Genetic Approach for Kinaseâ€Substrate Mapping by Covalent Capture of Thiophosphopeptides and Analysis by Mass Spectrometry. Current Protocols in Chemical Biology, 2010, 2, 15-36.	1.7	72
12	Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4776-83.	7.1	47
13	Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. ELife, 2019, 8, .	6.0	47
14	Development of a Chemical Genetic Approach for Human Aurora B Kinase Identifies Novel Substrates of the Chromosomal Passenger Complex. Molecular and Cellular Proteomics, 2012, 11, 47-59.	3.8	44
15	N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7081-E7090.	7.1	40
16	Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochemistry International, 2017, 109, 106-116.	3.8	39
17	Defining the proteolytic landscape during enterovirus infection. PLoS Pathogens, 2020, 16, e1008927.	4.7	36
18	Secreted 3-Isopropylmalate Methyl Ester Signals Invasive Growth during Amino Acid Starvation in <i>Saccharomyces cerevisiae</i> . Biochemistry, 2008, 47, 698-709.	2.5	13

NICHOLAS T HERTZ

#	Article	IF	CITATIONS
19	Neuronally Enriched RUFY3 Is Required for Caspase-Mediated Axon Degeneration. Neuron, 2019, 103, 412-422.e4.	8.1	12
20	Beyond the Gatekeeper: Imatinib- and Dasatinib-Resistant BCR-ABL/F317 Mutations Confer Cross-Resistance to VX-680 but Are Sensitive to a Structural Derivative of VX-680. Blood, 2008, 112, 725-725.	1.4	0
21	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
22	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
23	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
24	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0