Rudolf Jaffé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/551924/publications.pdf

Version: 2024-02-01

		29994	4	12291
149	9,761	54		92
papers	citations	h-index		g-index
149	149	149		7215
117	117	117		7213
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Unsupervised Structural Classification of Dissolved Organic Matter Based on Fragmentation Pathways. Environmental Science & En	4.6	12
2	Carbon and hydrogen isotopes of taraxerol in mangrove leaves and sediment cores: Implications for paleo-reconstructions. Geochimica Et Cosmochimica Acta, 2022, 324, 262-279.	1.6	6
3	Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: Effects on heteroatom composition of DOM. Science of the Total Environment, 2022, 838, 155790.	3.9	12
4	Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine, Coastal and Shelf Science, 2021, 248, 106768.	0.9	16
5	Direct versus indirect effects of human activities on dissolved organic matter in highly impacted lakes. Science of the Total Environment, 2021, 752, 141839.	3.9	50
6	Agricultural land use changes stream dissolved organic matter via altering soil inputs to streams. Science of the Total Environment, 2021, 796, 148968.	3.9	26
7	Controls of Land Use and the River Continuum Concept on Dissolved Organic Matter Composition in an Anthropogenically Disturbed Subtropical Watershed. Environmental Science &	4.6	54
8	Structural Characterization of Dissolved Organic Matter at the Chemical Formula Level Using TIMS-FT-ICR MS/MS. Analytical Chemistry, 2020, 92, 11960-11966.	3.2	25
9	Linking Hydrology and Dissolved Organic Matter Characteristics in a Subtropical Wetland: A Longâ€Term Study of the Florida Everglades. Global Biogeochemical Cycles, 2020, 34, e2020GB006648.	1.9	9
10	Distribution of n-alkanes and their $\hat{\Gamma}''$ 2H and $\hat{\Gamma}''$ 13C values in typical plants along a terrestrial-coastal-oceanic gradient. Geochimica Et Cosmochimica Acta, 2020, 281, 31-52.	1.6	35
11	Fires prime terrestrial organic carbon for riverine export to the global oceans. Nature Communications, 2020, 11, 2791.	5.8	71
12	Mulinane and Azorellane Diterpenoid Biomarkers by GC-MS from a Representative Apiaceae (Umbelliferae) Species of the Andes. Molecules, 2019, 24, 684.	1.7	3
13	Understanding the structural complexity of dissolved organic matter: isomeric diversity. Faraday Discussions, 2019, 218, 431-440.	1.6	30
14	Dissolved black carbon in aquatic ecosystems. Limnology and Oceanography Letters, 2018, 3, 168-185.	1.6	115
15	Fractionation of Dissolved Organic Matter by Co-Precipitation with Iron: Effects of Composition. Environmental Processes, 2018, 5, 5-21.	1.7	30
16	Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Science of the Total Environment, 2018, 612, 1442-1453.	3.9	87
17	Compositional aspects of herbaceous litter decomposition in the freshwater marshes of the Florida Everglades. Plant and Soil, 2018, 423, 87-98.	1.8	11
18	Sheet Flow Effects on Sediment Transport in a Degraded Ridgeâ€andâ€Slough Wetland: Insights Using Molecular Markers. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3124-3139.	1.3	3

#	Article	IF	CITATIONS
19	Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary. Organic Geochemistry, 2018, 125, 196-211.	0.9	20
20	Hydrological Controls on the Seasonal Variability of Dissolved and Particulate Black Carbon in the Altamaha River, GA. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3055-3071.	1.3	17
21	Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry–Fourier spectrometry–timeâ€ofâ€flight mass spectrometry versus trapped ion mobility spectrometry–Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1287-1295.	0.7	33
22	Land Use Controls on the Spatial Variability of Dissolved Black Carbon in a Subtropical Watershed. Environmental Science & Env	4.6	39
23	Environmental factorsÂcontrolling the distributions of Botryococcus braunii (A, B and L) biomarkers in a subtropical freshwater wetland. Scientific Reports, 2018, 8, 8626.	1.6	6
24	Predicting Reactive Intermediate Quantum Yields from Dissolved Organic Matter Photolysis Using Optical Properties and Antioxidant Capacity. Environmental Science & Environmental Science & 2017, 51, 5404-5413.	4.6	91
25	Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA. Aquatic Sciences, 2017, 79, 891-908.	0.6	22
26	Inverse relationship between salinity and $2H/1H$ fractionation in leaf wax n-alkanes from Florida mangroves. Organic Geochemistry, 2017, 110, 1-12.	0.9	20
27	Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures. Geophysical Research Letters, 2017, 44, 6226-6234.	1.5	34
28	Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments. Organic Geochemistry, 2017, 112, 16-21.	0.9	45
29	A New Perspective on the Apparent Solubility of Dissolved Black Carbon. Frontiers in Earth Science, 2017, 5, .	0.8	51
30	Impact of a Historical Fire Event on Pyrogenic Carbon Stocks and Dissolved Pyrogenic Carbon in Spodosols in Northern Michigan. Frontiers in Earth Science, 2017, 5, .	0.8	19
31	Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS. Biogeosciences, 2016, 13, 2257-2277.	1.3	105
32	Short-Term Dissolved Organic Carbon Dynamics Reflect Tidal, Water Management, and Precipitation Patterns in a Subtropical Estuary. Frontiers in Marine Science, 2016, 3, .	1.2	14
33	Compositions and isotopic differences of iso- and anteiso-alkanes in black mangroves (Avicennia) Tj ETQq $1\ 1\ 0.7$	784314 rg 0.7	BT /Qverlock
34	Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary. Estuarine, Coastal and Shelf Science, 2016, 182, 112-122.	0.9	26
35	Quantitative assessment of photo- and bio-reactivity of chromophoric and fluorescent dissolved organic matter from biomass and soil leachates and from surface waters in a subtropical wetland. Biogeochemistry, 2016, 129, 273-289.	1.7	45
36	Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources. Geophysical Research Letters, 2016, 43, 5750-5757.	1.5	27

#	Article	IF	CITATIONS
37	Compound specific Î'D and Î'13C analyses as a tool for the assessment of hydrological change in a subtropical wetland. Aquatic Sciences, 2016, 78, 809-822.	0.6	8
38	Occurrence of unsaturated C25 highly branched isoprenoids (HBIs) in a freshwater wetland. Organic Geochemistry, 2016, 93, 59-67.	0.9	25
39	Molecular properties of ultrafiltered dissolved organic matter and dissolved black carbon in headwater streams as determined by pyrolysis-GCâ¿MS. Journal of Analytical and Applied Pyrolysis, 2016, 118, 181-191.	2.6	38
40	Characterizing organic matter inputs to sediments of small, intermittent, prairie streams: a molecular marker and stable isotope approach. Aquatic Sciences, 2016, 78, 343-354.	0.6	6
41	Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnology and Oceanography, 2015, 60, 1222-1240.	1.6	43
42	Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System. Frontiers in Chemistry, 2015, 3, 66.	1.8	74
43	Linkages among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin. Frontiers in Marine Science, 2015, 2, .	1.2	63
44	New perspectives on an iconic landscape from comparative international longâ€term ecological research. Ecosphere, 2015, 6, 1-18.	1.0	9
45	Gas chromatography mass spectrometry based profiling of alkyl coumarates and ferulates in two species of cattail (Typha domingensis P., and Typha latifolia L.). Phytochemistry Letters, 2015, 13, 91-98.	0.6	21
46	Molecular characterization of dissolved black nitrogen via electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2015, 79, 21-30.	0.9	42
47	Effect of photodegradation on molecular size distribution and quality of dissolved black carbon. Organic Geochemistry, 2015, 86, 1-4.	0.9	52
48	Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers. Environmental Science & Environ	4.6	166
49	Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer. Estuarine, Coastal and Shelf Science, 2015, 159, 37-49.	0.9	18
50	Dissolved black carbon in boreal forest and glacial rivers of central Alaska: assessment of biomass burning versus anthropogenic sources. Biogeochemistry, 2015, 123, 15-25.	1.7	44
51	In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry, 2015, 124, 145-161.	1.7	66
52	Environmental assessment of vegetation and hydrological conditions in Everglades freshwater marshes using multiple geochemical proxies. Aquatic Sciences, 2015, 77, 271-291.	0.6	17
53	Utilization of <scp>PARAFAC</scp> â€Modeled Excitationâ€Emission Matrix (<scp>EEM</scp>) Fluorescence Spectroscopy to Identify Biogeochemical Processing of Dissolved Organic Matter in a Northern Peatland. Photochemistry and Photobiology, 2015, 91, 684-695.	1.3	32
54	Free radical scavenging (antioxidant activity) of natural dissolved organic matter. Marine Chemistry, 2015, 177, 668-676.	0.9	48

#	Article	IF	CITATIONS
55	Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades. Chemosphere, 2015, 119, 258-266.	4.2	18
56	The respiration of flocculent detrital organic matter (floc) is driven by phosphorus limitation and substrate quality in a subtropical wetland. Geoderma, 2015, 241-242, 272-278.	2.3	10
57	Assessing dissolved organic matter dynamics and source strengths in a subtropical estuary: Application of stable carbon isotopes and optical properties. Continental Shelf Research, 2015, 92, 98-107.	0.9	21
58	Evaluation of forest disturbance legacy effects on dissolved organic matter characteristics in streams at the Hubbard Brook Experimental Forest, New Hampshire. Aquatic Sciences, 2014, 76, 611-622.	0.6	31
59	Environmental dynamics of dissolved black carbon in wetlands. Biogeochemistry, 2014, 119, 259.	1.7	41
60	Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA. Environmental Sciences: Processes and Impacts, 2014, 16, 866-878.	1.7	65
61	Composition of dissolved organic nitrogen in rivers associated with wetlands. Science of the Total Environment, 2014, 493, 220-228.	3.9	19
62	Assessing source contributions to particulate organic matter in a subtropical estuary: A biomarker approach. Organic Geochemistry, 2014, 75, 129-139.	0.9	48
63	Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry, 2014, 119, 275-292.	1.7	88
64	Using Optical Properties to Quantify Fringe Mangrove Inputs to the Dissolved Organic Matter (DOM) Pool in a Subtropical Estuary. Estuaries and Coasts, 2014, 37, 399-410.	1.0	49
65	Dissolved black nitrogen (DBN) in freshwater environments. Organic Geochemistry, 2014, 68, 1-4.	0.9	22
66	Fluorescence characteristics of size-fractionated dissolved organic matter: Implications for a molecular assembly based structure?. Water Research, 2014, 55, 40-51.	5. 3	117
67	Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers. Journal of Sea Research, 2014, 91, 58-69.	0.6	20
68	Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Research, 2014, 61, 181-190.	5.3	141
69	Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in Assessing Environmental Dynamics of Natural Dissolved Organic Matter (DOM) in Aquatic Environments: A Review. ACS Symposium Series, 2014, , 27-73.	0.5	49
70	Dissolved black carbon in grassland streams: Is there an effect of recent fire history?. Chemosphere, 2013, 90, 2557-2562.	4.2	82
71	Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Continental Shelf Research, 2013, 66, 136-144.	0.9	144
72	Biomarkers in surface sediments from the Cross River and estuary system, SE Nigeria: Assessment of organic matter sources of natural and anthropogenic origins. Applied Geochemistry, 2013, 31, 239-250.	1.4	49

#	Article	IF	CITATIONS
73	Global Charcoal Mobilization from Soils via Dissolution and Riverine Transport to the Oceans. Science, 2013, 340, 345-347.	6.0	432
74	Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland. Biogeochemistry, 2013, 115, 167-183.	1.7	67
75	Biomarker assessment of spatial and temporal changes in the composition of flocculent material (floc) in the subtropical wetland of the Florida Coastal Everglades. Environmental Chemistry, 2013, 10, 424.	0.7	19
76	Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 566-580.	1.3	141
77	Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Marine and Freshwater Research, 2012, 63, 1098.	0.7	90
78	A Molecular and Stable Isotopic Approach to Investigate Algal and Detrital Energy Pathways in a Freshwater Marsh. Wetlands, 2012, 32, 531-542.	0.7	37
79	Dissolved Organic Matter Biogeochemistry Along a Transect of the Okavango Delta, Botswana. Wetlands, 2012, 32, 475-486.	0.7	58
80	Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere, 2012, 88, 1265-1268.	4.2	23
81	The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida. Critical Reviews in Environmental Science and Technology, 2011, 41, 633-669.	6.6	64
82	Photo-dissolution of flocculent, detrital material in aquatic environments: Contributions to the dissolved organic matter pool. Water Research, 2011, 45, 3836-3844.	5. 3	68
83	Solar radiation–enhanced dissolution of particulate organic matter from coastal marine sediments. Limnology and Oceanography, 2011, 56, 577-588.	1.6	58
84	Effects of Watershed History on Dissolved Organic Matter Characteristics in Headwater Streams. Ecosystems, 2011, 14, 1110-1122.	1.6	173
85	Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation–emission matrix fluorescence and parallel factor analysis. Ocean Dynamics, 2011, 61, 569-579.	0.9	130
86	Dissolved Organic Matter Characteristics Across a Subtropical Wetland's Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 2010, 13, 1006-1019.	1.6	202
87	Occurrence, distribution and origin of C30 cyclobotryococcenes in a subtropical wetland/estuarine ecosystem. Chemosphere, 2010, 81, 918-924.	4.2	2
88	Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography, 2010, 55, 1159-1171.	1.6	469
89	Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research, 2010, 115, .	3.3	117
90	Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1478-1485.	0.6	181

#	Article	IF	Citations
91	Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis. Organic Geochemistry, 2010, 41, 573-579.	0.9	44
92	Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry, 2010, 25, 872-880.	1.4	202
93	Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay). Estuarine, Coastal and Shelf Science, 2009, 85, 507-514.	0.9	27
94	Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry, 2009, 94, 255-270.	1.7	179
95	Photochemical alteration of 3-oxygenated triterpenoids: Implications for the origin of 3,4-seco-triterpenoids in sediments. Chemosphere, 2009, 74, 543-550.	4.2	37
96	Geochemical record of anthropogenic impacts on Lake Valencia, Venezuela. Applied Geochemistry, 2009, 24, 411-418.	1.4	23
97	Tools for Studying Biogeochemical Connectivity Among Tropical Coastal Ecosystems. , 2009, , 425-455.		3
98	Biomarker-based paleo-record of environmental change for an eutrophic, tropical freshwater lake, Lake Valencia, Venezuela. Journal of Paleolimnology, 2008, 40, 179-194.	0.8	23
99	Spectral characterization of chromophoric dissolved organic matter (CDOM) in a fjord (Doubtful) Tj ETQq1 1 0.7	7843 <u>1</u> 4 rg	BT <u>JO</u> verlock
100	Characterizing the Interactions between Trace Metals and Dissolved Organic Matter Using Excitationâ^'Emission Matrix and Parallel Factor Analysis. Environmental Science & Excitationa amp; Technology, 2008, 42, 7374-7379.	4.6	484
101	Oxygenated spiro-triterpenoids possibly related to arborenes in sediments of a tropical, freshwater lake. Organic Geochemistry, 2008, 39, 1400-1404.	0.9	6
102	Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnology and Oceanography, 2008, 53, 160-171.	1.6	103
103	Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEMâ€PARAFAC). Limnology and Oceanography, 2008, 53, 1900-1908.	1.6	419
104	Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnology and Oceanography, 2008, 53, 148-159.	1.6	121
105	Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research, 2007, 41, 563-570.	5. 3	286
106	Occurrence of long-chain n-alkenols, diols, keto-ols and sec-alkanols in a sediment core from a hypereutrophic, freshwater lake. Organic Geochemistry, 2007, 38, 870-883.	0.9	29
107	Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades. Chemosphere, 2007, 70, 224-236.	4.2	26
108	Lipid biomarkers in suspended particles from a subtropical estuary: Assessment of seasonal changes in sources and transport of organic matter. Marine Environmental Research, 2007, 64, 666-678.	1.1	37

#	Article	IF	CITATIONS
109	Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: A biomarker based study. Estuarine, Coastal and Shelf Science, 2007, 73, 201-210.	0.9	39
110	A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Marine Pollution Bulletin, 2007, 54, 1681-1691.	2.3	62
111	Geochemistry of a tropical lake (Lake Leopoldo) on pseudo-karst topography within the Roraima Group, Guayana Shield, Venezuela. Applied Geochemistry, 2006, 21, 870-886.	1.4	12
112	Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river. Chemosphere, 2006, 64, 1870-1884.	4.2	67
113	Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochimica Et Cosmochimica Acta, 2006, 70, 4491-4506.	1.6	99
114	Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: Paleoenvironmental indicators of diatom-derived organic matter inputs. Organic Geochemistry, 2006, 37, 847-859.	0.9	40
115	Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland. Biogeochemistry, 2006, 78, 285-314.	1.7	114
116	Organic Biogeochemistry of Detrital Flocculent Material (Floc) in a Subtropical, Coastal Wetland. Biogeochemistry, 2006, 77, 283-304.	1.7	59
117	Molecular characterization of Cladium peat from the Florida Everglades: biomarker associations with humic fractions. Hydrobiologia, 2006, 569, 99-112.	1.0	25
118	Molecular characterization of proteinaceous material in the Florida coastal Everglades. Hydrobiologia, 2006, 569, 129-133.	1.0	5
119	Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades. Hydrobiologia, 2006, 569, 135-150.	1.0	70
120	A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay. Hydrobiologia, 2006, 569, 179-192.	1.0	50
121	Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. Hydrobiologia, 2006, 569, 475-492.	1.0	31
122	Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine. Limnology and Oceanography, 2005, 50, 23-35.	1.6	65
123	Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Organic Geochemistry, 2005, 36, 363-370.	0.9	192
124	An assessment of the microbial contribution to aquatic dissolved organic nitrogen using amino acid enantiomeric ratios. Organic Geochemistry, 2005, 36, 1099-1107.	0.9	23
125	A Conceptual Framework to Develop Long-Term Ecological Research and Management Objectives in the Wider Caribbean Region. BioScience, 2004, 54, 843.	2.2	56
126	One-dimensional and two-dimensional polyacrylamide gel electrophoresis: a tool for protein characterisation in aquatic samples. Marine Chemistry, 2004, 85, 63-73.	0.9	19

#	Article	IF	CITATIONS
127	Early diagenesis of plantâ€derived dissolved organic matter along a wetland, mangrove,estuary ecotone. Limnology and Oceanography, 2004, 49, 1667-1678.	1.6	79
128	Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways. Environmental Pollution, 2003, 123, 291-299.	3.7	35
129	Organic aerosols in the Miami area, USA: temporal variability of atmospheric particles and wet/dry deposition. Chemosphere, 2002, 47, 427-441.	4.2	35
130	Origin and transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matter. Organic Geochemistry, 2001, 32, 21-32.	0.9	93
131	Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Organic Geochemistry, 2001, 32, 507-526.	0.9	181
132	Interaction between Hg(II) and natural dissolved organic matter: a fluorescence spectroscopy based study. Water Research, 2001, 35, 1793-1803.	5. 3	153
133	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155.	1.8	76
134	High temperature supercritical carbon dioxide extractions of geological samples: effects and contributions from the sample matrix. Applied Geochemistry, 2000, 15, 79-89.	1.4	21
135	Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 1998, 36, 925-929.	2.3	26
136	Determination of methylmercury in fish and aqueous samples using solid-phase microextraction followed by gas chromatography-atomic fluorescence spectrometry. Applied Organometallic Chemistry, 1998, 12, 565-569.	1.7	55
137	Ethylmercury in the Soils and Sediments of the Florida Everglades. Environmental Science & Emp; Technology, 1997, 31, 302-305.	4.6	85
138	Hydrocarbon speciation in ancient sediments studied by stepwise high-temperature supercritical carbon dioxide extraction. Organic Geochemistry, 1997, 26, 59-65.	0.9	23
139	Organic geochemistry of seasonally flooded rain forest soils: molecular composition and early diagenesis of lipid components. Organic Geochemistry, 1996, 25, 9-17.	0.9	88
140	Pollution effects of the Tuy River on the central Venezuelan coast: Anthropogenic organic compounds and heavy metals in Tivela mactroidea. Marine Pollution Bulletin, 1995, 30, 820-825.	2.3	21
141	The biogeochemistry of lipids in rivers of the Orinoco Basin. Geochimica Et Cosmochimica Acta, 1995, 59, 4507-4522.	1.6	80
142	Origin and early diagenesis of arborinone/isoarborinol in sediments of a highly productive freshwater lake. Organic Geochemistry, 1995, 22, 231-235.	0.9	45
143	High-temperature supercritical fluid extraction of hydrocarbons from geological samples and comparison to Soxhlet extraction. Journal of High Resolution Chromatography, 1994, 17, 679-681.	2.0	15
144	Analysis of organomercury compounds in sediments by capillary GC with atomic fluorescence detection. Journal of High Resolution Chromatography, 1994, 17, 745-748.	2.0	56

Rudolf Jaffé

#	Article	IF	CITATIONS
145	Organic compounds and heavy metals in the atmosphere of the city of Caracas, Venezuela? I: Atmospheric particles. Water, Air, and Soil Pollution, 1993, 71, 293-313.	1.1	13
146	Organic compounds and heavy metals in the atmosphere of the city of Caracas, Venezueala? II: Atmospheric deposition. Water, Air, and Soil Pollution, 1993, 71, 315-329.	1.1	6
147	Trace metal analyses in octocorals by microwave acid digestion and graphite furnace atomic-absorption spectrometry. Talanta, 1992, 39, 113-117.	2.9	15
148	Fate of hydrophobic organic pollutants in the aquatic environment: A review. Environmental Pollution, 1991, 69, 237-257.	3.7	76
149	Generation and maturation of carboxylic acids in ancient sediments from the Maracaibo Basin, Venezuela. Organic Geochemistry, 1990, 16, 211-218.	0.9	35