
Hanna Mazur-Marzec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins, 2018, 10, 156.	1.5	159
2	CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 2021, 196, 117017.	5.3	142
3	Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae, 2021, 102, 101989.	2.2	127
4	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	1.2	75
5	Indole-3-acetic acid in the culture medium of two axenic green microalgae. Journal of Applied Phycology, 2001, 13, 35-42.	1.5	70
6	Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanological and Hydrobiological Studies, 2013, 42, 358-378.	0.3	69
7	Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Marine Drugs, 2016, 14, 8.	2.2	65
8	Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia, 2013, 701, 235-252.	1.0	64
9	Characterization of nodularin variants inNodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 2023-2032.	0.7	63
10	Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions. Marine Drugs, 2013, 11, 1-19.	2.2	58
11	The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdańsk, southern Baltic Sea. Journal of Applied Phycology, 2005, 17, 171-179.	1.5	55
12	Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, southern Baltic Sea. Environmental Toxicology, 2007, 22, 101-111.	2.1	48
13	A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. Marine Drugs, 2016, 14, 45.	2.2	47
14	Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Scientific Reports, 2017, 7, 8342.	1.6	44
15	Baltic cyanobacteria – a source of biologically active compounds. European Journal of Phycology, 2015, 50, 343-360.	0.9	43
16	Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon. Oceanologia, 2009, 51, 203-216.	1.1	43
17	Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey. Harmful Algae, 2009, 8, 273-278.	2.2	39
18	The effect of cyanobacterial blooms in the Siemianówka Dam Reservoir on the phytoplankton structure in the Narew River. Oceanological and Hydrobiological Studies, 2011, 40, 19-26.	0.3	38

HANNA MAZUR-MARZEC

#	Article	IF	CITATIONS
19	Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Archives of Microbiology, 2014, 196, 697-707.	1.0	37
20	Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environmental Science and Pollution Research, 2019, 26, 11793-11804.	2.7	37
21	Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdańsk. Water Research, 2009, 43, 2801-2810.	5.3	34
22	Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem?. Oceanologia, 2009, 51, 293-319.	1.1	34
23	Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review. Marine Drugs, 2019, 17, 561.	2.2	33
24	Increased risk of exposure to microcystins in the scum of the filamentous cyanobacterium Aphanizomenon flos-aquae accumulated on the western shoreline of the Curonian Lagoon. Marine Pollution Bulletin, 2015, 99, 264-270.	2.3	32
25	A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins. Scientific Data, 2018, 5, 180226.	2.4	30
26	New microginins from cyanobacteria of Greek freshwaters. Chemosphere, 2020, 248, 125961.	4.2	29
27	Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea. Marine Drugs, 2016, 14, 209.	2.2	28
28	Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Marine Drugs, 2018, 16, 220.	2.2	28
29	Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of the Pomeranian Province, northern Poland. Oceanological and Hydrobiological Studies, 2008, 37, 3-21.	0.3	27
30	Bioaccumulation of microcystins in invasive bivalves: A case study from the boreal lagoon ecosystem. Oceanologia, 2015, 57, 93-101.	1.1	26
31	Biodegradation and sorption of nodularin (NOD) in fine-grained sediments. Chemosphere, 2008, 70, 2039-2046.	4.2	25
32	Recent trends in determination of neurotoxins in aquatic environmental samples. TrAC - Trends in Analytical Chemistry, 2019, 112, 112-122.	5.8	25
33	The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere, 2006, 65, 1388-1395.	4.2	24
34	Nodularia spumigena Peptides—Accumulation and Effect on Aquatic Invertebrates. Toxins, 2015, 7, 4404-4420.	1.5	24
35	Selective inhibition of cancer cells' proliferation by compounds included in extracts from Baltic Sea cyanobacteria. Toxicon, 2015, 108, 1-10.	0.8	24
36	The profound effect of harmful cyanobacterial blooms: From food-web and management perspectives. Science of the Total Environment, 2017, 609, 1443-1450.	3.9	24

#	Article	IF	CITATIONS
37	Antiviral Cyanometabolites—A Review. Biomolecules, 2021, 11, 474.	1.8	24
38	A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science, 2020, 7, .	1.2	22
39	Morphological, genetic, chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanologia, 2010, 52, 127-146.	1.1	20
40	The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river. Environmental Monitoring and Assessment, 2016, 188, 488.	1.3	19
41	Stratification strength and light climate explain variation in chlorophyll <scp><i>a</i></scp> at the continental scale in a European multilake survey in a heatwave summer. Limnology and Oceanography, 2021, 66, 4314-4333.	1.6	19
42	The potential causes of cyanobacterial blooms in Baltic Sea estuaries. Oceanological and Hydrobiological Studies, 2007, 36, 134-137.	0.3	18
43	Effect of Increased Temperature on Native and Alien Nuisance Cyanobacteria from Temperate Lakes: An Experimental Approach. Toxins, 2018, 10, 445.	1.5	18
44	Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts. Toxins, 2020, 12, 244.	1.5	17
45	The Effects of Cyanobacterial Bloom Extracts on the Biomass, Chl-a, MC and Other Oligopeptides Contents in a Natural Planktothrix agardhii Population. International Journal of Environmental Research and Public Health, 2020, 17, 2881.	1.2	17
46	Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters. Toxicon, 2017, 130, 47-55.	0.8	16
47	Insights into cyanophage-mediated dynamics of nodularin and other non-ribosomal peptides in Nodularia spumigena. Harmful Algae, 2018, 78, 69-74.	2.2	16
48	Interplay of Nutrients, Temperature, and Competition of Native and Alien Cyanobacteria Species Growth and Cyanotoxin Production in Temperate Lakes. Toxins, 2021, 13, 23.	1.5	15
49	Vertical distribution of cyanobacteria biomass and cyanotoxin production in the polymictic Siemianówka Dam Reservoir (eastern Poland). Archives of Polish Fisheries, 2014, 22, 41-51.	0.6	14
50	Response of Endolithic Chroococcidiopsis Strains From the Polyextreme Atacama Desert to Light Radiation. Frontiers in Microbiology, 2020, 11, 614875.	1.5	14
51	Are there concerns regarding cHAB in coastal bathing waters affected by freshwater-brackish continuum?. Marine Pollution Bulletin, 2020, 159, 111500.	2.3	12
52	Characteristics of cyanobacterium Pseudanabaena galeata CCNP1313 from the Baltic Sea. Algal Research, 2020, 47, 101861.	2.4	12
53	Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins, 2022, 14, 4.	1.5	12
54	Morphologic, Phylogenetic and Chemical Characterization of a Brackish Colonial Picocyanobacterium (Coelosphaeriaceae) with Bioactive Properties. Toxins, 2016, 8, 108.	1.5	11

HANNA MAZUR-MARZEC

#	Article	IF	CITATIONS
55	Biodegradation of nodularin and other nonribosomal peptides by the Baltic bacteria. International Biodeterioration and Biodegradation, 2018, 134, 48-57.	1.9	11
56	Anthropogenic impact on marine ecosystem health: A comparative multi-proxy investigation of recent sediments in coastal waters. Marine Pollution Bulletin, 2018, 133, 328-335.	2.3	11
57	Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea. Marine Drugs, 2018, 16, 116.	2.2	11
58	Eighteen New Aeruginosamide Variants Produced by the Baltic Cyanobacterium Limnoraphis CCNP1324. Marine Drugs, 2020, 18, 446.	2.2	11
59	Bioactive metabolites produced by Spirulina subsalsa from the Baltic Sea. Oceanologia, 2018, 60, 245-255.	1.1	10
60	Determination of indole-3-acetic acid in the Gulf of Gdańsk by high-performance liquid chromatography of its 4-methyl-7-methoxycoumarin derivative. Journal of Chromatography A, 1997, 766, 261-266.	1.8	9
61	First report of saxitoxins and anatoxin-a production by cyanobacteria from Lithuanian lakes. European Journal of Phycology, 2020, 55, 327-338.	0.9	9
62	Cyanobacterial blooms in the Gulf of Gdańsk (southern Baltic): the main effect of eutrophication. Oceanological and Hydrobiological Studies, 2008, 37, 115-121.	0.3	7
63	Luciferase reporter assay for small-molecule inhibitors of MIR92b-3p function: Screening cyanopeptolins produced by Nostoc from the Baltic Sea. Toxicology in Vitro, 2020, 68, 104951.	1.1	7
64	Nostoc edaphicum CCNP1411 from the Baltic Sea—A New Producer of Nostocyclopeptides. Marine Drugs, 2020, 18, 442.	2.2	7
65	Blooms of Toxic Cyanobacterium Nodularia spumigena in Norwegian Fjords During Holocene Warm Periods. Toxins, 2020, 12, 257.	1.5	7
66	Presence of ß-N-methylamino-L-alanine in cyanobacteria and aquatic organisms from waters of Northern Poland; BMAA toxicity studies. Toxicon, 2021, 194, 90-97.	0.8	7
67	Characterization and Diversity of Microcystins Produced by Cyanobacteria from the Curonian Lagoon (SE Baltic Sea). Toxins, 2021, 13, 838.	1.5	7
68	High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium Microcystis botrys. Toxins, 2019, 11, 698.	1.5	6
69	Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). Water (Switzerland), 2021, 13, 1760.	1.2	6
70	Calcium peroxide (CaO2) granules enclosed in fabrics as an alternative H2O2 delivery system to combat Microcystis sp Chemical Engineering Journal Advances, 2022, 11, 100318.	2.4	6
71	Toxic oligopeptides in the cyanobacterium <i>Planktothrix agardhii</i> -dominated blooms and their effects on duckweed (Lemnaceae) development. Knowledge and Management of Aquatic Ecosystems, 2018, , 41.	0.5	5
72	Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Scientific Reports, 2021, 11, 8970.	1.6	4

HANNA MAZUR-MARZEC

#	Article	IF	CITATIONS
73	Effect of crude extracts from Nodularia spumigena on round goby (Neogobius melanostomus). Marine Environmental Research, 2018, 140, 61-68.	1.1	3
74	Fragmentation mass spectra dataset of linear cyanopeptides - microginins. Data in Brief, 2020, 31, 105825.	0.5	2
75	Comparative characterization of two cyanobacteria strains of the order Spirulinales isolated from the Baltic Sea - polyphasic approach in practice. Algal Research, 2021, 55, 102170.	2.4	2
76	Nostocyclopeptides as New Inhibitors of 20S Proteasome. Biomolecules, 2021, 11, 1483.	1.8	2
77	Pseudanabaena galeata CCNP1313—Biological Activity and Peptides Production. Toxins, 2022, 14, 330.	1.5	2
78	Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules, 2021, 11, 1139.	1.8	1
79	Impact of UV-A and UV-B radiation on growth and toxin production of Nodularia spumigena and Microcystis aeruginosa. Algological Studies (Stuttgart, Germany: 2007), 2008, 128, 79-94.	0.4	0
80	Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 2022, 20, 93.	2.2	0
81	Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena. Applied and Environmental Microbiology, 0, , .	1.4	0