Jianjun Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518913/publications.pdf

Version: 2024-02-01

8181 9861 21,108 197 76 141 citations h-index g-index papers 198 198 198 25171 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 879-896.	12.0	10
2	Self-assembled natural small molecule diterpene acids with favorable anticancer activity and biosafety for synergistically enhanced antitumor chemotherapy. Journal of Materials Chemistry B, 2021, 9, 2674-2687.	5 . 8	19
3	Exploring the self-assembly mechanism and effective synergistic antitumor chemophototherapy of a biodegradable and glutathione responsive ursolic acid prodrug mediated photosensitive nanodrug. Biomaterials Science, 2021, 9, 3762-3775.	5.4	5
4	Carrier-Free Triterpene Prodrugs with Glutathione Response and Biosafety for Synergistically Enhanced Photochemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 245-256.	8.0	20
5	Nanomedicine-Cum-Carrier by Co-Assembly of Natural Small Products for Synergistic Enhanced Antitumor with Tissues Protective Actions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42537-42550.	8.0	31
6	Bioactive Natural Small Molecule-Tuned Coassembly of Photosensitive Drugs for Highly Efficient Synergistic and Enhanced Type I Photochemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43488-43500.	8.0	21
7	A highly atom-economical bioactive nanocarrier for synergistically enhanced antitumor with reduced liver injury. New Journal of Chemistry, 2020, 44, 16741-16751.	2.8	3
8	Manipulating the helix–coil transition profile of synthetic polypeptides by leveraging side-chain molecular interactions. Polymer Chemistry, 2020, 11, 1445-1449.	3.9	11
9	Targeting infected host cells in vivo via responsive azido-sugar mediated metabolic cell labeling followed by click reaction. Biomaterials, 2020, 238, 119843.	11.4	9
10	Novel Liposomal Azido Mannosamine Lipids on Metabolic Cell Labeling and Imaging via Cu-Free Click Chemistry. Bioconjugate Chemistry, 2019, 30, 2317-2322.	3 . 6	18
11	Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma. Biomaterials Science, 2019, 7, 4166-4173.	5.4	19
12	Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy. ACS Applied Materials & Sp.; Interfaces, 2019, 11, 29498-29511.	8.0	35
13	In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction. Biomaterials, 2019, 218, 119305.	11.4	35
14	Supramolecular Nanotheranostics. Theranostics, 2019, 9, 3014-3016.	10.0	6
15	Facile Synthesis of Helical Multiblock Copolypeptides: Minimal Side Reactions with Accelerated Polymerization of <i>N</i> -Carboxyanhydrides. ACS Macro Letters, 2019, 8, 1517-1521.	4.8	25
16	Recent Advances and Future Perspectives of Synthetic Polypeptides from <i>N</i> -Carboxyanhydrides. Macromolecules, 2019, 52, 8521-8539.	4.8	84
17	Reconfigurable Poly(ureaâ€urethane) Thermoset Based on Hindered Urea Bonds with Tripleâ€Shapeâ€Memory Performance. Macromolecular Chemistry and Physics, 2019, 220, 1900148.	2.2	33
18	Synthesis of polypeptides via bioinspired polymerization of in situ purified <i>N</i> -carboxyanhydrides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10658-10663.	7.1	87

#	Article	IF	CITATIONS
19	Proximity-Induced Cooperative Polymerization in "Hinged―Helical Polypeptides. Journal of the American Chemical Society, 2019, 141, 8680-8683.	13.7	58
20	Recent progress in nanomaterials for nucleic acid delivery in cancer immunotherapy. Biomaterials Science, 2019, 7, 2640-2651.	5.4	34
21	Enzyme-mimetic self-catalyzed polymerization of polypeptide helices. Nature Communications, 2019, 10, 5470.	12.8	46
22	Hindered Urea Bond: A Bilaterally Responsive Chemistry to Hydrogen Peroxide. European Journal of Organic Chemistry, 2019, 2019, 728-731.	2.4	6
23	Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomaterials Science, 2018, 6, 997-1001.	5.4	31
24	Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. Nano Letters, 2018, 18, 1908-1915.	9.1	289
25	Albumin as a "Trojan Horse―for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting. Biomaterials Science, 2018, 6, 1189-1200.	5.4	19
26	Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4903-4908.	7.1	223
27	A caged metabolic precursor for DT-diaphorase-responsive cell labeling. Chemical Communications, 2018, 54, 4878-4881.	4.1	18
28	Dynamic Ureas with Fast and pHâ€Independent Hydrolytic Kinetics. Chemistry - A European Journal, 2018, 24, 7345-7348.	3.3	12
29	Effective and Selective Antiâ€Cancer Protein Delivery via Allâ€Functionsâ€inâ€One Nanocarriers Coupled with Visible Lightâ€Responsive, Reversible Protein Engineering. Advanced Functional Materials, 2018, 28, 1706710.	14.9	98
30	Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting the endoplasmic reticulum. Polymer Chemistry, 2018, 9, 1206-1215.	3.9	21
31	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor⢠Receptor Coordination Interactions. Journal of the American Chemical Society, 2018, 140, 1235-1238.	13.7	236
32	Enhanced bioreduction-responsive diselenide-based dimeric prodrug nanoparticles for triple negative breast cancer therapy. Theranostics, 2018, 8, 4884-4897.	10.0	33
33	Dimeric Prodrug Self-Delivery Nanoparticles with Enhanced Drug Loading and Bioreduction Responsiveness for Targeted Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39455-39467.	8.0	35
34	Secondary structures in synthetic polypeptides from $\langle i \rangle N \langle i \rangle$ -carboxyanhydrides: design, modulation, association, and material applications. Chemical Society Reviews, 2018, 47, 7401-7425.	38.1	115
35	Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale, 2018, 10, 15339-15349.	5.6	37
36	Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release, 2017, 263, 211-222.	9.9	57

#	Article	lF	Citations
37	Inhibiting Solid Tumor Growth In Vivo by Nonâ€Tumorâ€Penetrating Nanomedicine. Small, 2017, 13, 1600954.	10.0	41
38	Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide. Frontiers of Chemical Science and Engineering, 2017, 11, 521-528.	4.4	17
39	Interactions between Membranes and "Metaphilic―Polypeptide Architectures with Diverse Side-Chain Populations. ACS Nano, 2017, 11, 2858-2871.	14.6	41
40	Cooperative polymerization of \hat{l}_{\pm} -helices induced by macromolecular architecture. Nature Chemistry, 2017, 9, 614-622.	13.6	125
41	Investigation on the controlled synthesis and post-modification of poly-[(N-2-hydroxyethyl)-aspartamide]-based polymers. Polymer Chemistry, 2017, 8, 1872-1877.	3.9	11
42	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	8.0	274
43	Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomaterialia, 2017, 58, 146-157.	8.3	27
44	Brd4 modulates the innate immune response through Mnk2–eIF4E pathway-dependent translational control of ll̂ºBl̂±. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3993-E4001.	7.1	60
45	Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260, 12-21.	9.9	90
46	Sequentially Responsive Shellâ€Stacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	21.0	360
47	Degradable and biocompatible hydrogels bearing a hindered urea bond. Biomaterials Science, 2017, 5, 2398-2402.	5.4	18
48	Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chemical Society Reviews, 2017, 46, 6570-6599.	38.1	290
49	Revisiting the Helical Cooperativity of Synthetic Polypeptides in Solution. Biomacromolecules, 2017, 18, 2324-2332.	5.4	11
50	Modulation of polypeptide conformation through donor–acceptor transformation of side-chain hydrogen bonding ligands. Nature Communications, 2017, 8, 92.	12.8	51
51	Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ. Journal of the American Chemical Society, 2017, 139, 11106-11116.	13.7	21
52	Selective killing of <i>Helicobacter pylori</i> with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12675-12680.	7.1	121
53	Folding Cooperativity of Synthetic Polypeptides with or without "Tertiary―Interactions. ACS Macro Letters, 2017, 6, 733-737.	4.8	5
54	Bacteriaâ€Assisted Activation of Antimicrobial Polypeptides by a Randomâ€Coil to Helix Transition. Angewandte Chemie - International Edition, 2017, 56, 10826-10829.	13.8	108

#	Article	IF	Citations
55	Synthesis of controlled, high-molecular weight poly(<scp> < scp>-glutamic acid) brush polymers. Biomaterials Science, 2017, 5, 1836-1844.</scp>	5.4	31
56	Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1301-1307.	3.3	19
57	$\langle i \rangle$ In Vivo $\langle i \rangle$ Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics, 2016, 6, 1467-1476.	10.0	34
58	The Effects of Spacer Length and Composition on Aptamerâ€Mediated Cellâ€Specific Targeting with Nanoscale PEGylated Liposomal Doxorubicin. ChemBioChem, 2016, 17, 1111-1117.	2.6	30
59	One-step construction of aminosquaraine backbone. Dyes and Pigments, 2016, 131, 264-267.	3.7	0
60	Gene Delivery Method Using Photo-Responsive Poly(\hat{l}^2 -Amino Ester) as Vectors. Methods in Molecular Biology, 2016, 1445, 259-267.	0.9	0
61	Targeted Delivery of Immunomodulators to Lymph Nodes. Cell Reports, 2016, 15, 1202-1213.	6.4	73
62	Photoinduced Metal-Free Atom Transfer Radical Polymerization of Biomass-Based Monomers. Macromolecules, 2016, 49, 7709-7717.	4.8	63
63	A delayed curing ROMP based thermosetting resin. Polymer Chemistry, 2016, 7, 5093-5098.	3.9	6
64	Facile synthesis of chitosan assisted multifunctional magnetic Fe ₃ O ₄ @SiO ₂ @CS@pyropheophorbide-a fluorescent nanoparticles for photodynamic therapy. New Journal of Chemistry, 2016, 40, 8522-8534.	2.8	35
65	Controlled Ringâ€Opening Polymerization of <i>O</i> òâ€Carboxyanhydrides Using a βâ€Diiminate Zinc Catalyst. Angewandte Chemie - International Edition, 2016, 55, 13010-13014.	13.8	56
66	Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4601-9.	7.1	71
67	Malleable and Recyclable Poly(ureaâ€urethane) Thermosets bearing Hindered Urea Bonds. Advanced Materials, 2016, 28, 7646-7651.	21.0	318
68	Preparation of Surfactant-Resistant Polymersomes with Ultrathick Membranes through RAFT Dispersion Polymerization. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17033-17037.	8.0	18
69	Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting. Journal of the American Chemical Society, 2016, 138, 9498-9507.	13.7	26
70	Targeted Ultrasoundâ€Assisted Cancerâ€6elective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angewandte Chemie - International Edition, 2016, 55, 5452-5456.	13.8	76
71	Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530, 71-76.	27.8	778
72	CD44 Mediated Nonviral Gene Delivery into Human Embryonic Stem Cells via Hyaluronic-Acid-Coated Nanoparticles. ACS Biomaterials Science and Engineering, 2016, 2, 326-335.	5.2	28

#	Article	IF	Citations
73	Crosslinked dendronized polyols as a general approach to brighter and more stable fluorophores. Chemical Communications, 2016, 52, 3781-3784.	4.1	31
74	Suppression of Hepatic Inflammation $\langle i \rangle via \langle i \rangle$ Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles. ACS Nano, 2016, 10, 1859-1870.	14.6	107
75	Highly Efficient SiRNA Delivery Mediated by Cationic Helical Polypeptides and Polypeptide-Based Nanosystems. Methods in Molecular Biology, 2016, 1364, 37-47.	0.9	5
76	Liposomal Nanoparticles of a Spleen Tyrosine Kinase P-Site Inhibitor Amplify the Potency of Low Dose Total Body Irradiation Against Aggressive B-Precursor Leukemia and Yield Superior Survival Outcomes in Mice. EBioMedicine, 2015, 2, 554-562.	6.1	9
77	Dual Stimuli-Responsive Poly(\hat{l}^2 -amino ester) Nanoparticles for On-Demand Burst Release. Macromolecular Bioscience, 2015, 15, 1314-1322.	4.1	16
78	Nanogelâ€Incorporated Physical and Chemical Hybrid Gels for Highly Effective Chemo–Protein Combination Therapy. Advanced Functional Materials, 2015, 25, 6744-6755.	14.9	90
79	Selfâ€Assembly of αâ€Helical Polypeptides Driven by Complex Coacervation. Angewandte Chemie - International Edition, 2015, 54, 11128-11132.	13.8	81
80	lonic αâ€helical polypeptides toward nonviral gene delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 98-110.	6.1	13
81	Bioorthogonal oxime ligation mediated in vivo cancer targeting. Chemical Science, 2015, 6, 2182-2186.	7.4	28
82	Redox-responsive self-assembled chain-shattering polymeric therapeutics. Biomaterials Science, 2015, 3, 1061-1065.	5.4	34
83	Development of Polypeptide-based Nanoparticles for Non-viral Delivery of CD22 RNA Trans-splicing Molecule as a New Precision Medicine Candidate Against B-lineage ALL. EBioMedicine, 2015, 2, 649-659.	6.1	13
84	Biodegradable Micelles Capable of Mannoseâ€Mediated Targeted Drug Delivery to Cancer Cells. Macromolecular Rapid Communications, 2015, 36, 483-489.	3.9	39
85	Redox-responsive, reversibly-crosslinked thiolated cationic helical polypeptides for efficient siRNA encapsulation and delivery. Journal of Controlled Release, 2015, 205, 231-239.	9.9	52
86	Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET-indicated drug release. Chemical Communications, 2015, 51, 4807-4810.	4.1	51
87	UV-responsive degradable polymers derived from 1-(4-aminophenyl) ethane-1,2-diol. Journal of Polymer Science Part A, 2015, 53, 1161-1168.	2.3	16
88	Polymeric biomaterials for cancer nanotechnology. Biomaterials Science, 2015, 3, 891-893.	5.4	14
89	Design of Albuminâ€Coated Microbubbles Loaded With Polylactide Nanoparticles. Journal of Ultrasound in Medicine, 2015, 34, 1363-1372.	1.7	2
90	Synthesis and Biomedical Applications of Functional Poly(\hat{l} ±-hydroxy acids) via Ring-Opening Polymerization of <i>O</i> -Carboxyanhydrides. Accounts of Chemical Research, 2015, 48, 1777-1787.	15.6	91

#	Article	IF	Citations
91	Functional polyesters derived from alternating copolymerization of norbornene anhydride and epoxides. Polymer Chemistry, 2015, 6, 3586-3590.	3.9	35
92	Leveraging Structure-Based Rational Drug Design and Nanotechnology to Destroy Leukemic Stem Cells., 2015,, 449-463.		0
93	Dimeric Drug Polymeric Nanoparticles with Exceptionally High Drug Loading and Quantitative Loading Efficiency. Journal of the American Chemical Society, 2015, 137, 3458-3461.	13.7	294
94	Non-invasive, real-time reporting drug release in vitro and in vivo. Chemical Communications, 2015, 51, 6948-6951.	4.1	51
95	New Frontiers for Encapsulation in the Chemical Industry. ACS Applied Materials & Discrete Services, 2015, 7, 6359-6368.	8.0	62
96	Targeting Tumor Vasculature with Aptamer-Functionalized Doxorubicin–Polylactide Nanoconjugates for Enhanced Cancer Therapy. ACS Nano, 2015, 9, 5072-5081.	14.6	70
97	Targeting leukemic stem cells with multifunctional bioactive polypeptide nanoparticles. Future Oncology, 2015, 11, 1149-1152.	2.4	4
98	Polypeptide vesicles with densely packed multilayer membranes. Soft Matter, 2015, 11, 4091-4098.	2.7	40
99	In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5903-5908.	7.1	287
100	$<$ i> $<$ scp>CD22i $^{\circ}$ "E12 as a molecular target for $<$ scp>RNAi therapy. British Journal of Haematology, 2015, 169, 401-414.	2.5	14
101	Trigger Chemistries for Better Industrial Formulations. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 6369-6382.	8.0	58
102	Helical antimicrobial polypeptides with radial amphiphilicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13155-13160.	7.1	166
103	A rationally designed nanoparticle for RNA interference therapy in B-lineage lymphoid malignancies. EBioMedicine, 2014, 1, 141-155.	6.1	16
104	Enhanced non-viral gene delivery to human embryonic stem cells via small molecule-mediated transient alteration of the cell structure. Journal of Materials Chemistry B, 2014, 2, 8098-8105.	5.8	12
105	Hydrolyzable Polyureas Bearing Hindered Urea Bonds. Journal of the American Chemical Society, 2014, 136, 16974-16977.	13.7	138
106	Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries. Advanced Materials, 2014, 26, 3879-3884.	21.0	263
107	High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nature Communications, 2014, 5, 3449.	12.8	121
108	Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chemical Communications, 2014, 50, 139-155.	4.1	256

#	Article	lF	Citations
109	Anticancer camptothecin-N-poly(lactic acid) nanoconjugates with facile hydrolysable linker. Polymer Chemistry, 2014, 5, 1581-1585.	3.9	19
110	Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications, 2014, 5, 3218.	12.8	738
111	CD19-antigen specific nanoscale liposomal formulation of a SYK P-site inhibitor causes apoptotic destruction of human B-precursor leukemia cells. Integrative Biology (United Kingdom), 2014, 6, 766-780.	1.3	12
112	Polypeptides with Quaternary Phosphonium Side Chains: Synthesis, Characterization, and Cell-Penetrating Properties. Biomacromolecules, 2014, 15, 1491-1497.	5.4	29
113	Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15344-15349.	7.1	523
114	Trigger-Responsive Poly(\hat{l}^2 -amino ester) Hydrogels. ACS Macro Letters, 2014, 3, 693-697.	4.8	44
115	Smart chemistry in polymeric nanomedicine. Chemical Society Reviews, 2014, 43, 6982-7012.	38.1	171
116	The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials, 2014, 35, 3443-3454.	11.4	85
117	Trigger-responsive, fast-degradable poly (\hat{l}^2 -amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials, 2014, 35, 5006-5015.	11.4	91
118	Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials, 2014, 35, 1302-1314.	11.4	52
119	Long-term kinetics of DNA interacting with polycations. Polymer, 2014, 55, 2464-2471.	3.8	22
120	Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science, 2013, 4, 3839.	7.4	134
121	Nonâ€Viral Gene Delivery via Membraneâ€Penetrating, Mannoseâ€Targeting Supramolecular Selfâ€Assembled Nanocomplexes. Advanced Materials, 2013, 25, 3063-3070.	21.0	119
122	Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 5288.	5.8	167
123	Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8, 290-312.	11.9	416
124	PEG-Polypeptide Dual Brush Block Copolymers: Synthesis and Application in Nanoparticle Surface PEGylation. ACS Macro Letters, 2013, 2, 809-813.	4.8	31
125	Poly(iohexol) Nanoparticles As Contrast Agents for in Vivo X-ray Computed Tomography Imaging. Journal of the American Chemical Society, 2013, 135, 13620-13623.	13.7	92
126	Lightâ€Responsive Helical Polypeptides Capable of Reducing Toxicity and Unpacking DNA: Toward Nonviral Gene Delivery. Angewandte Chemie - International Edition, 2013, 52, 9182-9186.	13.8	148

#	Article	IF	Citations
127	Drug-Initiated Ring-Opening Polymerization of <i>O</i> Carboxyanhydrides for the Preparation of Anticancer Drug–Poly(<i>O</i> carboxyanhydride) Nanoconjugates. Biomacromolecules, 2013, 14, 920-929.	5.4	70
128	Trigger-responsive chain-shattering polymers. Polymer Chemistry, 2013, 4, 224-228.	3.9	44
129	Cationic, helical polypeptide-based gene delivery for IMR-90 fibroblasts and human embryonic stem cells. Biomaterials Science, 2013, 1, 719.	5.4	30
130	Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Letters, 2013, 2, 40-44.	4.8	116
131	Size-Dependent Tumor Penetration and <i>in Vivo</i> i> Efficacy of Monodisperse Drug–Silica Nanoconjugates. Molecular Pharmaceutics, 2013, 10, 883-892.	4.6	145
132	Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials, 2013, 34, 2340-2349.	11.4	80
133	Protein corona significantly reduces active targeting yield. Chemical Communications, 2013, 49, 2557.	4.1	321
134	Supramolecular Selfâ€Assembled Nanoparticles Mediate Oral Delivery of Therapeutic TNFâ€Î± siRNA against Systemic Inflammation. Angewandte Chemie - International Edition, 2013, 52, 5757-5761.	13.8	84
135	Nucleation-Controlled Polymerization of Nanoparticles into Supramolecular Structures. Journal of the American Chemical Society, 2013, 135, 11417-11420.	13.7	52
136	Chainâ€Shattering Polymeric Therapeutics with Onâ€Demand Drugâ€Release Capability. Angewandte Chemie - International Edition, 2013, 52, 6435-6439.	13.8	132
137	Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules, 2013, 14, 3706-3712.	5.4	160
138	Production approaches for microbubbles loaded with nanoparticles. , 2013, , .		0
139	Nanoscale liposomal formulation of a SYK P-site inhibitor against B-precursor leukemia. Blood, 2013, 121, 4348-4354.	1.4	30
140	Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy. International Journal of Nanomedicine, 2013, 9, 43.	6.7	12
141	A Cell-penetrating Helical Polymer For siRNA Delivery to Mammalian Cells. Molecular Therapy, 2012, 20, 1599-1609.	8.2	56
142	Synthesis of Water-Soluble Poly(α-hydroxy acids) from Living Ring-Opening Polymerization of <i>O</i> -Benzyl- <scp>I</scp> -serine Carboxyanhydrides. ACS Macro Letters, 2012, 1, 441-444.	4.8	57
143	Facile Functionalization of Polyesters through Thiol-yne Chemistry for the Design of Degradable, Cell-Penetrating and Gene Delivery Dual-Functional Agents. Biomacromolecules, 2012, 13, 3456-3462.	5.4	68
144	Reactive and Bioactive Cationic αâ€Helical Polypeptide Template for Nonviral Gene Delivery. Angewandte Chemie - International Edition, 2012, 51, 1143-1147.	13.8	162

#	Article	IF	CITATIONS
145	Aptamerâ€Functionalized, Ultraâ€Small, Monodisperse Silica Nanoconjugates for Targeted Dualâ€Modal Imaging of Lymph Nodes with Metastatic Tumors. Angewandte Chemie - International Edition, 2012, 51, 12721-12726.	13.8	96
146	Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer–Drug Conjugates. Macromolecules, 2012, 45, 2225-2232.	4.8	55
147	Water-Soluble Poly(<scp>l</scp> -serine)s with Elongated and Charged Side-Chains: Synthesis, Conformations, and Cell-Penetrating Properties. Biomacromolecules, 2012, 13, 2609-2615.	5.4	51
148	Polymeric nanomedicines based on poly(lactide) and poly(lactide-co-glycolide). Current Opinion in Solid State and Materials Science, 2012, 16, 323-332.	11.5	45
149	Zinc complex mediated regioselective O-acylation of therapeutic agents. Chemical Science, 2012, 3, 2234.	7.4	5
150	Polyvalent Mesoporous Silica Nanoparticleâ€Aptamer Bioconjugates Target Breast Cancer Cells. Advanced Healthcare Materials, 2012, 1, 567-572.	7.6	101
151	Synthesis and Biological Response of Size-Specific, Monodisperse Drug–Silica Nanoconjugates. ACS Nano, 2012, 6, 3954-3966.	14.6	163
152	The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles. Biomaterials, 2012, 33, 1162-1169.	11.4	82
153	Targeting Mantle Cell Lymphoma with Anti-SYK Nanoparticles. Journal of Analytical Oncology, 2012, 1, 1-9.	0.1	7
154	Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16883-16888.	7.1	287
155	Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA. Chemical Communications, 2011, 47, 10830.	4.1	18
156	Water-Soluble Polypeptides with Elongated, Charged Side Chains Adopt Ultrastable Helical Conformations. Macromolecules, 2011, 44, 6641-6644.	4.8	73
157	Supramolecular Polymerization from Polypeptide-Grafted Comb Polymers. Journal of the American Chemical Society, 2011, 133, 12906-12909.	13.7	54
158	Interrupted Helical Structure of Grafted Polypeptides in Brush-Like Macromolecules. Macromolecules, 2011, 44, 8699-8708.	4.8	33
159	Ring-Opening Polymerization of \hat{l}^3 -(4-Vinylbenzyl)- <scp>l</scp> -glutamate <i>N</i> -Carboxyanhydride for the Synthesis of Functional Polypeptides. Macromolecules, 2011, 44, 6237-6240.	4.8	53
160	Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine, 2011, 6, 229-240.	1.7	155
161	lonic polypeptides with unusual helical stability. Nature Communications, 2011, 2, 206.	12.8	227
162	Synthesis of Polypeptides by Ring-Opening Polymerization of \hat{l}_{\pm} -Amino Acid N-Carboxyanhydrides. Topics in Current Chemistry, 2011, 310, 1-26.	4.0	114

#	Article	IF	CITATIONS
163	Drug-polyester conjugated nanoparticles for cancer drug delivery. , 2011, 2011, 8337-9.		О
164	The formulation of aptamer-coated paclitaxel–polylactide nanoconjugates and their targeting to cancer cells. Biomaterials, 2010, 31, 3043-3053.	11.4	120
165	Reversible Threeâ€State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles. Angewandte Chemie - International Edition, 2010, 49, 5120-5124.	13.8	206
166	Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Microscopy Research and Technique, 2010, 73, 901-909.	2.2	42
167	Multiplexed supramolecular self-assembly for non-viral gene delivery. Biomaterials, 2010, 31, 9117-9127.	11.4	41
168	Lymphatic Biodistribution of Polylactide Nanoparticles. Molecular Imaging, 2010, 9, 7290.2010.00012.	1.4	22
169	Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2213-2218.	7.1	231
170	Near IR Heptamethine Cyanine Dye–Mediated Cancer Imaging. Clinical Cancer Research, 2010, 16, 2833-2844.	7.0	248
171	Polylactideâ€eyclosporin A nanoparticles for targeted immunosuppression. FASEB Journal, 2010, 24, 3927-3938.	0.5	78
172	Controlled Synthesis of Camptothecinâ^'Polylactide Conjugates and Nanoconjugates. Bioconjugate Chemistry, 2010, 21, 111-121.	3.6	62
173	Controlled formulation of doxorubicin-polylactide nanoconjugates for cancer drug delivery. , 2009, 2009, 2400-2.		1
174	Nanopolymeric Therapeutics. MRS Bulletin, 2009, 34, 422-431.	3.5	51
175	Reversible Cellâ€5pecific Drug Delivery with Aptamerâ€Functionalized Liposomes. Angewandte Chemie - International Edition, 2009, 48, 6494-6498.	13.8	343
176	Inorganic Mercury Detection and Controlled Release of Chelating Agents from Ion-Responsive Liposomes. Chemistry and Biology, 2009, 16, 937-942.	6.0	46
177	One-Pot Synthesis of Brush-Like Polymers via Integrated Ring-Opening Metathesis Polymerization and Polymerization of Amino Acid <i>N</i> Carboxyanhydrides. Journal of the American Chemical Society, 2009, 131, 13582-13583.	13.7	106
178	Ring-Opening Polymerization-Mediated Controlled Formulation of Polylactideâ^Drug Nanoparticles. Journal of the American Chemical Society, 2009, 131, 4744-4754.	13.7	131
179	Paclitaxelâ€Initiated, Controlled Polymerization of Lactide for the Formulation of Polymeric Nanoparticulate Delivery Vehicles. Angewandte Chemie - International Edition, 2008, 47, 4830-4834.	13.8	175
180	The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials, 2008, 29, 1216-1223.	11.4	63

#	ARTICLE	IF	CITATIONS
181	<i>N</i> -Trimethylsilyl Amines for Controlled Ring-Opening Polymerization of Amino Acid <i>N</i> -Carboxyanhydrides and Facile End Group Functionalization of Polypeptides. Journal of the American Chemical Society, 2008, 130, 12562-12563.	13.7	157
182	Anticancer Polymeric Nanomedicines. Polymer Reviews, 2007, 47, 345-381.	10.9	270
183	Hexamethyldisilazane-Mediated Controlled Polymerization of α-Amino Acid <i>N</i> -Carboxyanhydrides. Journal of the American Chemical Society, 2007, 129, 14114-14115.	13.7	272
184	Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on A Chip, 2007, 7, 786.	6.0	344
185	Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28, 869-876.	11.4	1,151
186	Structureâ [^] Function Correlation of Chloroquine and Analogues as Transgene Expression Enhancers in Nonviral Gene Delivery. Journal of Medicinal Chemistry, 2006, 49, 6522-6531.	6.4	118
187	Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials, 2006, 27, 1479-1486.	11.4	220
188	Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6315-6320.	7.1	1,595
189	Magnetically Responsive Polymeric Microparticles for Oral Delivery of Protein Drugs. Pharmaceutical Research, 2006, 23, 557-564.	3.5	122
190	Pharmacokinetics and biodistribution of the camptothecin–polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemotherapy and Pharmacology, 2006, 57, 654-662.	2.3	139
191	Preclinical Efficacy of the Camptothecin-Polymer Conjugate IT-101 in Multiple Cancer Models. Clinical Cancer Research, 2006, 12, 1606-1614.	7.0	213
192	Microfluidic System for Studying the Interaction of Nanoparticles and Microparticles with Cells. Analytical Chemistry, 2005, 77, 5453-5459.	6.5	159
193	Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biology and Therapy, 2004, 3, 641-650.	3.4	190
194	Synthesis of Linear, \hat{l}^2 -Cyclodextrin-Based Polymers and Their Camptothecin Conjugates. Bioconjugate Chemistry, 2003, 14, 1007-1017.	3.6	197
195	Controlled Polymerization of β-Lactams Using Metal−Amido Complexes: Synthesis of Block Copoly(β-peptides). Journal of the American Chemical Society, 2001, 123, 9457-9458.	13.7	53
196	Synthesis and Conformational Analysis of Optically Active Poly(\hat{l}^2 -peptides). Macromolecules, 2001, 34, 5169-5174.	4.8	33
197	Screening of Optically Active Nickel Initiators for Enantioasymmetric Polymerization of Î ³ -Benzyl Glutamate-N-Carboxyanhydride. Macromolecules, 1999, 32, 4745-4747.	4.8	27